

Расходомер-счетчик газа ультразвуковой Turbo Flow UFG-F

Руководство по эксплуатации ТУАС.407252.001 РЭ

Содержание

1	Описание и ра	юта	5
	1.1 Назначени	ие расходомера	5
	1.2 Техническ	кие характеристики	5
	1.3 Комплект	ность	7
	1.4 Функцион	альная схема и интерфейс пользователя	12
	1.5 Принцип	измерения	13
	1.6 Автомати	ческая регулировка усиления	15
	1.7 Обеспечен	ние взрывозащищенности	16
	1.8 Маркиров	ка и пломбирование	16
	1.9 Упаковка	1	17
2	Использовани	е по назначению	18
	2.1 Эксплуата	щионные ограничения	18
	2.2 Меры безо	опасности	19
	2.3 Рекоменла	ации по монтажу	19
	2.4 Пуск расхо	одомера	22
	2.5 Применени	ие расхоломера с использованием РШ	23
	2.6 Применени	ие расхоломера с использованием ППК	43
	2.7 Измерение	реверсивных расхолов	63
	2.8 Лублирова	ние вычислительных устройств и средств измерений	63
	2.9 Самолиагн	остика	67
	2.10 Сигнальн	ые выхолы	
	2.11 Настройк	а лиапазонов	76
	2.12 Выбор ка	беля питания и связи	70
	2.13 Работа с I	s	80
3	Капибровка		81
5	31 Калибров	ка имитационным метолом (сухая калибровка)	
	3.2 Калибров	ка по расхолу	82
4	Поверка и тесті	ипование	88
т	4 1 Поверка и тест		88
	4.1 Поверка на	а измерения скорости зрука	
	4.3 Тест сигна		
	4.5 Teel cui na 4.4 Порериз из		ےر 96
	4.4 Поверка ка	апала измерения температуры	96
	4.5 Поверка ка	пала измерсния дабления	
5	Техницеское об	болуживание и ремонт	00
5	5 1 Общие ук	азания	00
	5.2 Поралок г	азапия	00
	5.2 Порядок I. 5.3 Возможни	роведения то и ремонта	100
	5.1 DUIMOWHE	яе неисправности и методы их устранения	100
6	Ланистортиро	кустической помехи на результат измерении	102
07	Транспортиро	вание и хранение	102
, П	у Гилизация	Πημικόη αρτικά νατορικότα αδοριανονικά προγοποικόπο	102
П	риложение А	пример записи условного осозначения расходомера	105
п	риложение в	Бнешний вид расходомера	104
п	риложение Б	Схема подключения расходомера	114
п		Схема соединении у ПР и РШ	11/
	риложение Д	Схемы монтажа расходомера	120
	риложение Е	Схема пломоирования расходомера	130
	риложение ж	Организация взрывозащиты	152
	риложение И	Схема обеспечения искрооезопасности	154
	риложение К	карта регистров ModBus PIII UFG	155
	риложение Л	ьитовые маски кодов НС в архиве	164
	риложение М	Примеры распечаток РШ	166
П	риложение Н	Перечень документов, на которые даны ссылки	172

Настоящее руководство по эксплуатации (РЭ) распространяется на расходомер-счетчик газа ультразвуковой Turbo Flow UFG модификации Turbo Flow UFG – F (далее – расходомер) и предназначено для обеспечения правильной эксплуатации расходомера, ознакомления с его конструкцией, изучения правил эксплуатации, а так же монтажа и пуска при вводе в эксплуатацию.

Расходомер соответствует требованиям ТУ 4213-012-70670506-2013.

К монтажу и обслуживанию изделия допускаются лица, ознакомленные с настоящим РЭ и имеющие квалификационную группу по обслуживанию электроустановок не ниже III.

Предприятие-изготовитель оставляет за собой право вносить в конструкцию расходомера изменения непринципиального характера, не влияющие на метрологические характеристики и функциональные возможности прибора, без отражения их в настоящем руководстве по эксплуатации.

В данном РЭ применены следующие условные обозначения:

- АКБ аккумуляторная батарея;
- АРУ автоматическая регулировка усиления;
- АСУТП автоматизированные системы управления технологическим процессом;
- ВПИ верхний предел измерений;
- ВР вычислитель расхода;
- ДД датчик давления;
- ЖКИ жидкокристаллический индикатор;
- КИПиА контрольно-измерительные приборы и автоматика;
- НС нештатная ситуация;
- ПО программное обеспечение;
- ПП первичный преобразователь;
- ППК промышленный персональный компьютер;
- РЭ-руководство по эксплуатации;
- РСГ расходомер-счетчик газа;
- РШ-расходомерный шкаф;
- ТО-техническое обслуживание;
- УЗР ультразвуковой расходомер
- УПР ультразвуковой преобразователь расхода;
- ЭБ электронный блок;
- ЭФ экранная форма;
- ЭР экранная форма.

1 Описание и работа

1.1 Назначение расходомера

1.1.1 Расходомер - счетчик газа ультразвуковой Turbo Flow UFG модификации Turbo Flow UFG – F предназначен для измерений объемного расхода и объема газа при рабочих условиях и вычислений объемного расхода и объема газа, приведенных к стандартным условиям, а так же для вычислений массового расхода и массы газа, в том числе природного и свободного нефтяного.

1.1.2 В расходомере предусмотрена возможность замены электроакустических преобразователей под давлением, в рабочем режиме без вывода его из эксплуатации, автоматическая самодиагностика и проверка нулевых и контрольных значений измеряемых величин, а также возможность измерения расхода газа в прямом и в обратном направлении (реверсивный режим).

1.2 Основные технические характеристики

1.2.1 Основные технические характеристики расходомера приведены в таблице 1.1.

Таблица 1.1

Технические характеристики	Значение характеристики
Диапазон измерений расхода газа (в зависимости от исполнения), м ³ /ч	от 1,5 до 32000
Динамический диапазон, Q _{min} / Q _{max}	1:200
Диаметр условный, мм	от 50 до 500
Пределы допускаемой относительной погрешности при измере газа при рабочих условиях, для комбинации пар приемопер Q _{min} ≤ Q < 0,01 Q _{max} :	ении объемного расхода и объема редатчиков в диапазоне расходов
 при 1 паре приемопередатчиков, % 	± 3,0 (± 3,5*)
– при 2 парах приемопередатчиков, %	± 2,0 (± 2,5*)
– при 4, 6, 8 парах приемопередатчиков, %	\pm 1,0 (\pm 1,5*)
– при 4, 6, 8 парах приемопередатчиков (по специальному заказу), %	$\pm 0,5 (\pm 1,0^*)$
Пределы допускаемой относительной погрешности при измере газа при рабочих условиях, для комбинации пар приемопер 0,01Q _{max} ≤ Q < Q _{max} :	ении объемного расхода и объема редатчиков в диапазоне расходов
– при 1 паре приемопередатчиков (класс точности Д), %	± 1,5 (± 2,0*)
– при 2 парах приемопередатчиков (класс точности Г), %	\pm 1,0 (\pm 1,5*)
– при 4, 6, 8 парах приемопередатчиков (класс точности В), %	\pm 1,0 (\pm 1,5*)
– при 4, 6, 8 парах приемопередатчиков (по специальному заказу) (класс точности А, Б), %	$\pm 0,3 \ (\pm 0,5*)$
Скорость потока газа в обоих направлениях, м/с, не более	45
Диапазон избыточного давления газа, МПа	от 0 до 25
Верхние пределы измерений избыточного давления (ВПИ), МПа	0,0025; 0,004;0,0063; 0,01; 0,016; 0,025; 0,04; 0,063; 0,1; 0,160; 0,25; 0,4; 0,6; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25
Верхние пределы измерений абсолютного давления (ВПИ), МПа	0,1; 0,16; 0,25; 0,4; 0,6; 1,0; 1,6; 2,5; 4,0; 6,0; 6,3; 10; 16; 25
Пределы допускаемой относительной погрешности расходомера при измерении давления, %	± 0,25

Продолжение таблицы 1.1

Технические характеристики	Значение характеристики		
Пределы допускаемой приведенной погрешности УПР при преобразовании расхода в токовый сигнал (от 4 до 20 мА), %	± 0,1		
Пределы допускаемой относительной погрешности УПР при преобразовании расхода газа в частотный сигнал, %	± 0,1		
Диапазон температур газа, °С			
для исполнения М	от минус 30 до плюс 70		
для исполнения Х	от минус 50 до плюс 70		
Пределы допускаемой абсолютной погрешности при измерении температуры, °С	± (0,15 + 0,002 · t) где t – измеряемая температура		
Пределы допускаемой относительной погрешности вычислителя ВР при вычислении массового расхода и массы газа, объемного расхода и объема газа, приведенных к стандартным условиям, %	± 0,02		
Глубина архива:			
- часового, месяц	2		
- суточного, год	1		
- месячного, год	1		
Цифровые проводные интерфейсы	протокол HART, протокол MODBUS RTU по интерфейсу RS-232, RS-232 TTL и RS-485		
Цифровые беспроводные интерфейсы	GSM, GPRS, Bluetooth, IrDA (ИК-порт), Zig Bee, M2M 433/868 МГц		
Исполнение взрывозащиты	1 Ex dib [ia Ga] IIC T4 Gb или 1 Ex d [ia Ga] IIC T4 Gb		
Напряжение питания от внешнего блока питания, В	от 7 до 30		
Потребляемая мощность, Вт, не более	30,0		
Условия эксплуатации: - температура окружающего воздуха, °С			
для исполнения М	от минус 30 до плюс 70		
для исполнения Х	от минус 50 до плюс 70		
 относительная влажность воздуха, % 	до 95		
- атмосферное давление, кПа	от 84,0 до 106,7		
Масса (в зависимости от исполнения), кг,	от 12 до 1500		
Габаритные размеры (LxHxB) (в зависимости от исполнения), мм	от (250×300×170) до (4200×2000×2000)		
Средняя наработка на отказ, ч, не менее	70 000		
Примечание: * – погрешность указана при имитационном методе поверки расходомеров			

1.2.2 Вид климатического исполнения соответствует группе условий 5 (ОЖ4) по ГОСТ 15150, но при температуре окружающей среды от минус 50 °C до плюс 50 °C.

1.2.3 В зависимости от диапазона температуры окружающей и измеряемой среды расходомер имеет исполнения М и Х.

1.2.4 В модификации Turbo Flow UFG – F - до шести пар ультразвуковых приемопередатчиков, по специальному заказу для модификации Turbo Flow UFG – F возможно устанавливать до восьми пар ультразвуковых приемопередатчиков.

1.2.5 Диапазоны расходов в рабочих условиях и количество пар приемопередатчиков для модификации расходомера Turbo Flow UFG – F приведены в таблице 1.2.

1.2.6 Пример записи условного обозначения расходомера при заказе и в технической документации приведен в приложении А.

1.2.7 Внешний вид расходомера (в зависимости от исполнения) и основные размеры приведены в приложении Б.

Таблица 1.2

DN NG	Скорость потока газа, м/с		Расход газа, м ³ /ч		Панана са така с така
DIN, MM	\mathbf{V}_{\min}	V_{max}	Q_{\min}^{*}	Q _{max} *	приемопередатчики
50	0,198	39,61	1,4	280	2/4
65	0,184	36,83	2,2	440	2/4
80	0,193	38,7	3,5	700	2/4
100	0,194	38,9	5,5	1100	4
125	0,181	36,21	8	1600	4
150	0,188	37,72	12	2400	4
200	0,194	38,9	22	4400	4
250	0,198	39,61	35	7000	6
300	0,196	39,3	50	10000	6
350	0,173	34,64	60	12000	6
400	0,177	35,367	80	16000	8
450	0,175	34,93	100	20000	8
500	0,177	35,367	125	25000	8
Примечани *– значения	ие: и приведены ори	иентировочно дл	я DN.		

1.3 Комплектность

1.3.1 Комплект поставки расходомера приведен в таблице 1.3. Таблица 1.3

Наименование Обозначение Кол-во Примечание Расходомер – счетчик газа Модификация в Turbo Flow UFG - F 1 шт. ультразвуковой Turbo Flow UFG зависимости от заказа Расходомер – счетчик газа Допускается поставлять ультразвуковой Turbo Flow UFG-F.. ТУАС.407252.001 РЭ один экземпляр в один 1 экз. Руководство по эксплуатации адрес отгрузки Расходомер – счетчик газа ультразвуковой Turbo Flow UFG-F. ТУАС.407252.001 ПС 1 экз В зависимости от заказа Паспорт Инструкция. ГСИ. Расходомеры -Допускается поставлять счетчики газа ультразвуковые Turbo МП 56432-14 1 экз. один экземпляр в один Flow UFG. Методика поверки адрес отгрузки Эксплуатационная документация на входящие в состав расходомера 1 к-т средства измерений Комплект монтажных частей 1 к-т

1.3.2 Состав расходомера:

- ультразвуковой преобразователь расхода;
- первичные преобразователи температуры и давления;
- электронный блок;
- расходомерный шкаф;
- промышленный компьютер;
- вычислитель расхода.

1.3.2.1 Ультразвуковой преобразователь расхода (УПР)

Ультразвуковой преобразователь расхода выполнен в виде корпуса круглого или прямоугольного сечения. Состоит из центрального элемента с установленными ультразвуковыми приемо-передатчиками и фланцами на обоих концах, а также втулок для установки первичных преобразователей температуры и давления.

Материал корпуса УПР выбирается, исходя из требований заказчика. В стандартном исполнении корпус выполнен из углеродистой или коррозионностойкой стали, устойчивой к солевому туману и другим химическим веществам, в том числе к парам сероводорода и соляной кислоты.

1.3.2.2 Первичные преобразователи температуры и давления

Для измерения температуры измеряемой среды и абсолютного (избыточного) давления используются выносные первичные преобразователи температуры и давления, подключаемые к расходомеру:

– в качестве датчика давления в составе расходомера применяются датчики давления взрывозащищенного исполнения с уровнем взрывозащиты не ниже 0 Ex ia IIC T6, имеющие сертификат соответствия и интервал между поверками не менее 4-х лет;

– в качестве датчика температуры в составе расходомера применяются термометры сопротивления с номинальной статической характеристикой 100 П, имеющие сертификат соответствия и интервал между поверками не менее 4-х лет. Питание датчика температуры осуществляется от встроенного барьера искрозащиты 1 Ех [ia Ga] IIC T4 Gb.

1.3.2.3 Электронный блок (ЭБ)

ЭБ представляет собой комплекс электронных плат смонтированных в металлическом корпусе, необходимых для управления первичными преобразователями, устанавливается на корпусе УПР или может быть встроен в расходомерный шкаф (РШ). Конструкция ЭБ предусматривает возможность передачи параметров и результатов измерений на ПК по средствам беспроводного канала передачи данных 900/1800 МГц (встроенного GSM модема) или проводного канала передачи данных, интерфейс RS-485.

ЭБ осуществляет прием-передачу сигналов через ультразвуковые приемо-передатчики, их преобразование, обработку и вычисление расхода газа с последующим формированием цифрового выходного сигнала. Все данные сохраняются в постоянной памяти с отметкой времени события (журнал).

Двойной взрывонепроницаемый корпус ЭБ выполнен из коррозионностойкого модифицированного алюминиево-кремниевого сплава GALSi13, устойчивого к солевому туману и другим химическим веществам, в том числе к парам сероводорода и соляной кислоты.

На передней панели расположены:

– жидкокристаллический индикатор (ЖКИ) предназначенный для отображения текущих измеренных значений, диагностики и журналов;

– стилус – представляет собой магнитный карандаш, предназначенный для управления данными отображаемыми на ЖКИ;

– элементы управления – представляют собой клавиатуру, состоящую из четырех клавиш, назначение которых соответствует таблице 1.4.

Таблица 1.4

Обозначение клавиши	Назначение
\uparrow / \downarrow	Переключение экранных форм вверх/вниз
\rightarrow	Включение / отключение Bluetooth (двукратным нажатием)
←	Включение / отключение GSM модема (двукратным нажатием)

На боковой панели ЭБ расположены разъем для установки антенны и кабель с разъемом – для подключения персонального компьютера. На задней панели под защитной крышкой расположен слот для установки sim-карты.

Внешний вид электронного блока представлен на рисунке Б.2 приложения Б.

Расходомерный шкаф (РШ) предназначен для:

– архивирования в энергонезависимой памяти и вывода на жидкокристаллический индикатор результатов измерений, вычислений (объема, расхода, температуры и давления) и параметров функционирования;

- введения и регистрации значений условно-постоянных величин;
- защиты от несанкционированного доступа к параметризации и архивам;
- разделения и ограничения напряжения и тока в искробезопасных цепях;

- обеспечения питания от промышленной сети и внутренней аккумуляторной батареи (АКБ); обеспечения питания от внешнего источника постоянного тока.

РШ представляет собой электронное устройство, помещенное в пластмассовый корпус. Конструкция РШ предусматривает наличие встроенного модема, который позволяет обеспечить передачу данных по беспроводному каналу связи GSM, а также в зависимости от заказа, может включать в себя вычислитель расхода.

На передней панели расположены:

- жидкокристаллический индикатор (ЖКИ);

– элементы управления (две клавиатуры), состоящие из двадцати клавиш, назначение которых соответствует таблице 1.5.

Обозначение клавиши	Назначение
[F 1]	Выбор / смена канала (для многоканальных расходомеров)
[F 2]	Ввод отрицательных значений (знак «-»)
[F 3]	Удаление предыдущего символа при вводе значений
[0][9]	Ввод пароля и изменение параметров / просмотр текущих значений
[.]	Вывод на печать (для подменю «Архив»)
[C]	Выход из основного меню / из подменю, выход из режима
[-]	редактирования / режима просмотра параметров
$[\leftarrow][\rightarrow]$	Горизонтальное перемещение курсора при вводе параметров и
	перехода из режима в режим
[1][1]	Изменение значения при вводе параметров, перемещение по пунктам
	меню и подменю
[OK]	Вход в основное меню, вход в режим редактирования, подтверждение
	ввода значения

Таблица 1.5

– светодиодная линейка, состоящая из шести индикаторов, назначение которых соответствует таблице 1.6.

Таолица 1.6		
Обозначение индикатора	Назначение	Индикация
CETL	Индикация 220 В	Отсутствует – при отключенной сети 220 В
CEID		Красным цветом – при подключенной сети 220 В
	Напряжение питания	Отсутствует – при отсутствии напряжения питания
		Желтым цветом – при подаче напряжения питания
	Уровень заряда АКБ	Отсутствует – при уровне заряда АКБ более 75%
ГАЗГЛД		Красным цветом – при уровне заряда АКБ менее 25%
	Заряд АКБ	Отсутствует – при
ЗАГЛД		Зеленым цветом – в момент заряда АКБ
пп	Питание ПП	Отсутствует – при отсутствии ПП
1111		Зеленым цветом – при наличии питания ПП
МОЛЕМ	Питание модема	Отсутствует – при отсутствии модема
модем		Желтым цветом – при наличии питания модема

На нижней боковой панели расположены:

- слот для установки sim-карты;
- разъем для установки антенны;
- разъем «Печать» для подключения принтера;
- разъем «ПК» для подключения персонального компьютера;
- разъем «УПР» для подключения ультразвукового преобразователя расхода;
- выключатель «СЕТЬ» для подачи питающего напряжения 220 В;
- выключатель «АКБ» для подачи питающего напряжения 12 В;
- разъем «DC 12V» для подключения питающего напряжения 12 В;
- разъем «AC 220V» для подключения питающего напряжения 220 В;
- клемма « » для заземления расходомера.

Внешний вид расходомерного шкафа представлен на рисунке Б.3 приложения Б.

1.3.2.4 Промышленный персональный компьютер (ППК) предназначен для:

– архивирования в энергонезависимой памяти и вывода на резистивный сенсорный экран результатов измерений, вычислений (объема, расхода, температуры и давления) и параметров функционирования;

- введения и регистрации значений условно-постоянных величин;
- защиты от несанкционированного доступа к параметризации и архивам;
- разделения и ограничения напряжения и тока в искробезопасных цепях;
- обеспечения питания от промышленной сети или внутренней аккумуляторной батареи (АКБ).

ППК представляет собой электронное устройство, помещенное в металлический корпус с резистивным сенсорным экраном диагональю 10 дюймов. Конструкция ППК предусматривает наличие встроенного модема, который позволяет обеспечить передачу данных по беспроводным каналам GSM/CSD, GPRS/EDGE, 3G, а также в зависимости от заказа, может включать в себя вычислитель расхода.

На передней панели расположены:

- резистивный сенсорный экран ППК;
- замок для закрытия дверцы;
- GSM антенна.

На нижней боковой панели расположены:

- разъем для подключения ЭБ (до 3-х шт.);
- разъем для Ethernet;
- разъем USB;
- внешняя антенна модема;

- разъем для подключения внешних устройств;
- выключатель сети 220 В;
- клемма заземления;
- индикатор наличия напряжения питания 220 В.

Для упрощения управления, ввода параметров и диагностики используется программа «XG VIEWER»

Программа обеспечивает доступ ко всем параметрам системы, реализует показ информации из сохраненных архивов по измерениям и по диагностике прибора, предоставляет возможность сохранения всей архивной информации на внешних носителях.

Программа позволяет создавать и сохранять диагностические сессии, которые возможно направить техническим специалистам для проведения анализа работоспособности счетчика, определению неисправности и рекомендации по ее устранению.

Установка программы «XG VIEWER»:

Поддерживаемые операционные системы:

- Windows Vista SP1 или более поздняя версия,
- Windows 7, Windows 7 SP1,
- Windows Server 2008 (не поддерживается в основной роли сервера),
- Windows Server 2008 R2 (не поддерживается в основной роли сервера),
- Windows Server 2008 R2 SP1,
- Windows 8, Windows 8.1.

Поддерживаемые архитектуры: x86, x64.

Аппаратные требования:

– Рекомендуемый минимум: процессор с тактовой частотой 1 ГГц или выше, 1536 МБ оперативной памяти или больше;

- Минимальное место на диске (кроме Windows 8 и Windows 8.1): x86 – 850 ME, x64 – 2 ГЕ;

– Минимальное место на диске (Windows 8 и Windows 8.1): 30 МБ.

Также необходимо убедиться, что на компьютере установлен самый последний пакет обновления и важные исправления Windows. При необходимости нужно выполнить обновление.

ТПО работает в среде выполнения «.NET Framework» версии 4.0.3. В операционных системах Windows 8 и Windows 8.1 платформа «.NET Framework» уже встроена в ОС. Для обеспечения работы ТПО в Windows Vista, Windows 7, Windows Server 2008 необходимо установить платформу «.NET Framework» версии 4.0.3. Необходимые расположены файлы в полкаталоге 1_dotNetFx40_Full_x86_x64.exe, «DotNetPack 403ru». Последовательность установки: 2 dotNetFx40LP Full x86 x64ru.exe, 3 NDP40-KB2600211-x86-x64.exe.

ТПО не снабжено специальным установщиком. Поэтому каталог с необходимыми файлами необходимо скопировать в удобное место (Мои документы, диск С: и т. п.), создать ярлык запуска на рабочем столе с помощью стандартных средств Windows (выпадающее контекстное меню действий с файлом/Отправить/Рабочий стол (создать ярлык)). Ярлык необходимо создать на файл «XGViewer.exe» (тот, который со значком в виде прибора).

Внешний вид промышленного персонального компьютера представлен на рисунке Б.4 приложения Б.

1.3.2.5 Вычислитель расхода

Вычислитель расхода (ВР) или корректор объема газа предназначены для:

– преобразования входных сигналов по каналам расхода, давления и температуры в значения расхода, давления и температуры;

– вычисления объемного расхода и объема газа, приведенных к стандартным условиям, а также массового расхода и массы газа по стандартизованным алгоритмам с учетом введенных теплофизических параметров измеряемой среды.

Конструктивно ВР может быть встроен в ЭБ или вынесен в РШ.

1.4 Функциональная схема и интерфейс пользователя

1.4.1 Функциональная схема расходомера представлена на рисунке 1.1. В состав расходомера входят датчики измеряемых физических величин, ЭБ (ЭБ1 размещен под крышкой корпуса ПП, ЭБ2 размещен в корпусе ВР-20), средства взаимодействия с оператором.

Измерительная информация от ультразвуковых датчиков, датчиков температуры и давления поступает в ЭБ1 обработки первичной измерительной информации. ЭБ1 осуществляет измерение текущего расхода, температуры и давления газа. Результаты измерений передаются в ЭБ2.

Рисунок 1.1 Функциональная схема расходомера

1.4.2 Интерфейс пользователя реализован посредством средств взаимодействия с оператором. Данные технические средства располагают в удобном для работы оператора месте, защищенном от попадания влаги и прямых солнечных лучей. С их помощью выполняется просмотр и распечатка измерительного архива и архива событий, изменение состава газа, изменение настроечных параметров, а так же визуализация измерительных данных и параметров самодиагностики в удобной форме.

В зависимости от комплектации расходомера, взаимодействие с оператором может осуществляется посредством стандартного рабочего шкафа РШ, промышленного персонального компьютера ППК либо персонального компьютера ПК (ноутбука) с конвертером.

В случае использования РШ архивы будут сохраняться в нем. Если же в качестве средств взаимодействия с оператором будет использоваться ППК или ПК с конфертером, то архивация будет осуществляться в ЭБ2.

В зависимости от исполнения расходомера РШ предусматривает отсутствие клавиатуры и ЖКИ. В этом случае РШ может использоваться как источник питания УПР напряжением 18..24 В от сети 220±22 В, (50±1) Гц с блоком разделения и ограничения напряжения и тока в искробезопасных цепях без дополнительных функций.

1.5 Принцип измерения

1.5.1 Принцип измерений основан на разности времен прохождения ультразвукового импульса, направленного вдоль потока газа и против него. Измеренная разность времен, пропорциональная скорости потока, преобразуется в значение объемного расхода газа.

1.5.2 Основы ультразвукового метода измерений

Рассмотрим основные математические формулы, реализованные в ультразвуковом расходомере.

Время распространения звука в направлении потока

$$t_{AB} = \frac{L}{c + v \cdot \cos\varphi} \,, \tag{1}$$

где *L* – расстояние между датчиками (длина хода луча), м;

c – скорость звука, м/с;

v – скорость потока, м/с;

 φ – угол между акустическим лучом и направлением потока (рисунок 1.2).

Рисунок 1.2

Время распространения звука против потока

$$t_{BA} = \frac{L}{c - v \cdot cos\varphi} \,. \tag{2}$$

Скорость потока

$$v = \frac{L}{2 \cdot \cos\varphi} \left(\frac{1}{t_{AB}} - \frac{1}{t_{BA}} \right). \tag{3}$$

Объемный расход газа в рабочих условиях

$$Q_{v} = S \cdot v , \qquad (4)$$

где S – площадь поперечного сечения расходомера, м².

Объем газа в стандартных условиях

$$Q_c = K_c \cdot Q_v = \frac{\rho}{\rho_c} \cdot Q_v = \frac{p \cdot T_c}{p_c \cdot T} \cdot \frac{1}{K} \cdot Q_v , \qquad (5)$$

где $K_{\rm c}-$ коэффициент приведения к стандартным условиям;

 ρ – плотность газа, кг/м³;

*ρ*_c – плотность газа при стандартных условиях;

Р – абсолютное давление газа, МПа;

P_c – стандартное давление газа, 0,1013 МПа;

T – температура газа, °С;

 T_c – стандартная температура газа, 20 °C;

К – коэффициент сжимаемости газа (зависит от состава газа).

Скорость звука в газе

$$c = \frac{L}{2} \cdot \left(\frac{1}{t_{AB}} + \frac{1}{t_{BA}}\right). \tag{6}$$

Теоретическая скорость звука может быть получена исходя из состава газа, его температуры и давления. Эта теоретическая скорость звука должна быть идентична измеренной скорости. Таким образом, скорость звука дает хорошую возможность для диагностики работы системы.

1.5.3 Принцип измерения времени пролета ультразвукового импульса

После подачи на передающий УЗ датчик импульса напряжения длительностью равной половине периода резонансных колебаний датчика, формируется пространственная звуковая волна в направлении приемного датчика.

Принятый датчиком приемником измерительный сигнал имеет сложную форму, образованную сложением двух гармонических колебаний с близкими частотами и разными амплитудами. Типовой вид осциллограммы измерительного сигнала, полученной на выходе предварительного усилителя (рисунок 1.3).

Рисунок 1.3 Осциллограмма сигнала на выходе предварительного усилителя

Для измерения времени прохождения УЗ колебаний выполняется дальнейшее усиление сигнала и выделяется первый информационный импульс с амплитудой большей уровня компарирования (половины напряжения питания) (рисунок 1.4). Полярность информационного импульса может быть как положительной, так и отрицательной.

Рисунок 1.4 Осциллограмма на выходе оконечного усилителя

За время пролета импульса принимается интервал времени между выстрелом и моментом срабатывания компаратора.

1.6 Автоматическая регулировка усиления

1.6.1 Система автоматической регулировки усиления (АРУ) предназначена для автоматического поддержания амплитуды измерительного сигнала на требуемом уровне. Без системы АРУ амплитуда измерительного сигнала может значительно изменяться при изменении давления газа в газопроводе (амплитуда пропорционална давлению), скорости потока газа (эффект сноса луча) и при загрязнении УЗ датчиков.

1.6.2 Система АРУ обеспечивает поддержание на заданном уровне с заданным допустимым отклонением амплитуды первого перегиба информационного сигнала на выходе предварительного усилителя (рисунок 1.5).

Рисунок 1.5

1.6.3 Стабилизация амплитуды измерительного сигнала осуществляется посредством управления коэффициентом передачи предварительного усилителя с помощью двух 7-разрядных цифровых потенциометров R1 и R2 (рисунок 1.6).

Рисунок 1.6 Схема усилителя с АРУ

1.6.4 Регулировка коэффициента передачи осуществляется по принципу следящей системы. Если измеренная амплитуда меньше требуемой, то происходит увеличение коэффициента передачи на одну ступень, если же амплитуда больше – уменьшение коэффициента передачи на одну ступень.

1.6.5 Основные параметры системы АРУ:	
 – число ступеней регулировки коэффициента передачи 	120;
 — шаг регулировки коэффициента передачи, % 	5;
– идеальная амплитуда, задается при выпуске с производства;	
– допустимое отклонение амплитуды от идеальной, %	5;
 стартовый индекс коэффициента АРУ 	60;
– динамический диапазон, Ku _{max} /Ku _{min}	350.

Доступ к параметрам системы АРУ осуществляется посредством АРМ в дереве параметров.

1.6.7 Система АРУ отключается в случае, если отношение сигнал/шум меньше установленного порогового значения, т.е. сигнал не обнаружен. В данном случае устанавливается средний коэффициент усиления, соответствующий стартовому индексу коэффициента АРУ равного 60.

1.7 Обеспечение взрывозащищенности

1.7.1 Взрывозащищенность основных блоков расходомера достигается:

– ограничением напряжений и токов в электрических цепях до безопасных значений;

– гальваническим разделением искробезопасных электрических цепей подключения датчиков от выходных;

– выполнением конструкции расходомера в соответствии с ГОСТ Р МЭК 60079-0-2011, ГОСТ Р МЭК 60079-11-2010, ГОСТ IEC 60079-1-2011 (в зависимости от исполнения). Организация взрывозащиты расходомера приведена в приложении Ж.

1.7.2 УПР выполнен во взрывонепроницаемом исполнении и имеет маркировку взрывозащиты 1 Ex d ib [ia Ga] IIC T4 Gb или 1 Ex d [ia Ga] IIC T4 Gb, соответствуют ГОСТ Р МЭК 60079-0-2011, ГОСТ Р МЭК 60079-11-2010 и ГОСТ IEC 60079-1-2011 и может устанавливаться во взрывоопасных зонах помещений и наружных установок согласно гл.7.3 ПУЭ.

1.7.3 Выходные цепи РШ для подключения УПР выполнены в искробезопасном исполнении в соответствии с ГОСТ Р МЭК 60079-0-2011, ГОСТ Р МЭК 60079-11-2010 и ГОСТ IEC 60079-1-2011. РШ имеют маркировку [Ex ib Gb] IIC.

1.7.4 Схема обеспечения искробезопасности расходомера приведена в приложении И.

1.8 Маркировка и пломбирование

1.8.1 Маркировка расходомера соответствует требованиям ГОСТ 26828-86 и сохраняется в течение всего срока службы расходомера при соблюдении условий эксплуатации.

1.8.2 На корпусе УПР нанесена аппликация, содержащая:

- наименование (тип) расходомера;

- товарный знак предприятия-изготовителя;
- знак утверждения типа в соответствии с ПР 50.2.107-09;
- указатель направления потока;
- максимальной избыточное давление рабочей среды;
- маркировку взрывозащиты 1 Ex d ib [ia Ga] IIC T4 Gb или 1 Ex d [ia Ga] IIC T4 Gb;
- параметры входных искробезопасных цепей: U_i: 18 B; I_i: 0,5 A; C_i: 0,8 мкФ; L_i: 0,2 мГн;
- наименование или знак органа по сертификации и номер сертификата;
- температуру окружающей среды: -60 °C ≤ ta≤ +70 °C;
- заводской номер и дату изготовления.
- 1.8.3 На корпусе РШ нанесена аппликация, содержащая:
- товарный знак предприятия-изготовителя;
- знак утверждения типа в соответствии с ПР 50.2.107-09;
- специальный знак взрывобезопасности;
- наименование (тип) расходомера;
- заводской номер и дату изготовления;
- маркировку взрывозащиты [Ex ib Gb] IIC;

– параметры выходных искробезопасных цепей: U_m: 250 B; U₀: 18 B; I₀: 0,5 A; C₀: 1,5 мкФ; L₀: 0,25 мГн;

- наименование или знак органа по сертификации и номер сертификата;
- − температуру окружающей среды:+5 °C \leq ta \leq +50 °C;
- потребляемую мощность;
- наименование или знак органа по сертификации и номер сертификата.

1.8.4 Пломбирование расходомера производится заводской пломбой в местах углубления под головки винтов в соответствии с приложением Е.

1.9 Упаковка

1.9.1 Упаковка расходомера производится в специальный деревянный тарный ящик, выполненный в соответствии:

- ГОСТ 2991-85 ящики для грузов массой до 500 кг;
- ГОСТ 10198-91 ящики для грузов от 200 до 20000 кг;
- ГОСТ 24634-81 для поставок в другие страны.

Упаковка исключает перемещение узлов и частей расходомера внутри тары при транспортировании и защищает их от механического воздействия.

- 1.9.2 На тарный ящик наносится этикетка, содержащая следующую информацию:
- наименование, товарный знак и адрес предприятия-изготовителя;
- полное название изделия;
- манипуляционные знаки;
- условия транспортирования и хранения.

1.9.3 Эксплуатационная документация упаковывается в пакет из полиэтиленовой пленки. Эксплуатационная документация и упаковочный лист вкладываются совместно с расходомером в транспортную тару.

Упаковочный лист содержит следующие данные:

- наименование предприятия-изготовителя;
- наименование и условное обозначение расходомера;
- комплектность;
- дату упаковки.

2 Использование по назначению

2.1 Эксплуатационные ограничения

2.1.1 Монтаж, ввод в эксплуатацию и поверка расходомера производятся организацией, имеющей разрешение предприятия-изготовителя.

2.1.2 Расходомер является неремонтируемым в условиях эксплуатации изделием, ремонт осуществляется предприятием-изготовителем, или организацией, имеющей разрешение предприятия-изготовителя.

2.1.3 Искробезопасные параметры для подключения датчика давления: U₀= 24 B, I₀= 0,148 A, C₀= 0,102 мкФ, L₀= 4 мГн.

2.1.4 Искробезопасные параметры для подключения термометра сопротивления: U_0 = 10 B, I_0 = 0,063 A, C_0 = 1,54 мкФ, L_0 = 2 мГн.

2.1.5 Искробезопасные параметры интерфейса RS-485: U₀= 6,7 B, I₀= 0,315 A, C₀= 19,6 мкФ, L₀= 1,5 мГн.

2.1.6 Искробезопасные параметры для подключения ультразвуковых датчиков: U₀= 38,6 B, I₀= 0,06 A, C₀= 0,035 мкФ, L₀= 14 мГн.

2.1.7 РШ и ППК устанавливаются в помещениях (операторских) при температуре окружающей среды от плюс 5 °C до плюс 50 °C и относительной влажности до 80 %.

2.1.8 Максимально допустимая амплитуда вибраций расходомера 0,35 мм при частоте 5-35 Гц.

2.1.9 Расходомер сохраняет работоспособность и герметичность соединений при повышении избыточного давления измеряемой среды в трубопроводе на 20 % от максимального.

2.1.10 Соединение УПР с РШ либо с ППК должно быть выполнено экранированным кабелем, сопротивление которого не превышает 10 Ом.

ВНИМАНИЕ! Подключение УПР к РШ либо к ППК производить только при отключенном питании.

2.1.11 Для сведения к минимуму влияния электромагнитных помех заземление экранирующей оплетки соединительного сигнального кабеля должно быть выполнено только в одной точке – со стороны РШ или ППК.

2.1.12 Не допускается прокладка сигнального кабеля параллельно кабелям и проводам питающей сети на расстоянии менее 1 метра. Пересечение сигнального кабеля с кабелями и проводами питающей цепи должно выполняться под прямым углом.

2.1.13 Соединение УПР с РШ либо с ППК должно быть выполнено экранированным кабелем, сопротивление которого не превышает 10 Ом (для кабеля КСПвЭП 8х2х0,4 длина составит порядка 400 м).

2.1.14 Не допускается размещение РШ и ППК в местах, где на него может попадать вода, а также вблизи источников теплового и электромагнитного излучений. В воздухе должны отсутствовать пары кислот, щелочей, аммиака, сернистых и других агрессивных газов, вызывающих коррозию.

2.1.15 Работы по монтажу (демонтажу) УПР должны выполняться при отсутствии давления газа в трубопроводе и при отключенном напряжении питания.

2.2 Меры безопасности

2.2.1 К эксплуатации расходомера допускаются лица, изучившие настоящее руководство по эксплуатации и прошедшие необходимый инструктаж.

2.2.2 К монтажу расходомера допускаются лица, достигшие 18-ти летнего возраста, прошедшие медицинское освидетельствование, обучение на слесаря-монтажника КИПиА с допуском к газоопасным работам по программе «Правила технической эксплуатации и требований безопасности труда в газовом хозяйстве РФ», техническую и практическую подготовку на предприятии-изготовителе.

2.2.3 При монтаже, подготовке к пуску, эксплуатации и демонтаже расходомера необходимо соблюдать требования правил техники безопасности, установленными на объекте и регламентируемыми при работе с пожароопасными и взрывоопасными газами, газами под давлением, Правил технической эксплуатации электроустановок потребителей, Межотраслевых правил по охране труда (правила безопасности) при эксплуатации электроустановок, в том числе пользоваться инструментом, исключающим возникновение искры.

2.2.4 Выполнение работ по врезке на действующий газопровод разрешается только специализированной бригаде, в составе не менее двух человек, при наличии проектной документации.

2.2.5 Сварочные работы должны выполняться сварщиком, аттестованным в соответствии с требованиями Ростехнадзора.

2.2.6 При работе с устройствами КИПиА необходимо пользоваться монтажным инструментом с изолирующими рукоятками. Запрещается использовать неисправные приборы и электроинструменты.

2.2.7 При эксплуатации расходомер должен подвергаться систематическим контрольным осмотрам.

2.3 Рекомендации по монтажу

2.3.1 Перед началом работ по монтажу расходомера необходимо определить следующие параметры:

– материал стенки трубопровода;

- наружный диаметр трубопровода в местах установки расходомера;
- средний наружный диаметр трубопровода;
- средний наружный диаметр трубопровода в продольной плоскости установки расходомера;
- средняя толщина стенки трубопровода.

2.3.2 Средний внутренний диаметр сечения ИТ или его фланца, расположенного непосредственного перед корпусом УПР, не должен отличаться более чем на 3% от значения среднего внутреннего диаметра входного сечения корпуса УПР.

Если значение отклонения менее 1%, то считают, что уступ, образованный за счет разности внутренних диаметров ИТ и УПР, не оказывает влияние на показания УПР.

Если значение указанного отклонения более 1%, но не превышает 3%, то при оценивании неопределенности результатов измерений расхода и количества газа учитывают дополнительную составляющую, которую рассчитывают по формуле:

$$\Theta_{i} = 5 \left| \frac{\overline{D} - \overline{D}_{T}}{\overline{D}} \right|,$$

где \overline{D} – средний внутренний диаметр входного сечения корпуса УПР;

*D*_г – средний внутренний диаметр ИТ или его фланца в месте его стыковки с УПР.

Если внутренний диаметр корпусного УПР менее внутреннего диаметра ИТ, и отклонение внутреннего диаметра ИТ от внутреннего диаметра входного сечения корпуса УПР (или его входного фланца) превышает 1%, то допускается выполнять сопряжение его корпуса с ИТ путем применения конических переходов, угол конуса которых не должен превышать 10°.

Примечание – Средний внутренний диаметр входного (выходного) сечения УПР, сечение трубопровода или его фланцев в местах их стыковки между собой определяют как среднее арифметическое результатов измерений не менее чем в четырех диаметральных направлениях, расположенных приблизительно под одинаковым углом друг к другу.».

2.3.3 Установка и демонтаж оборудования на трубопроводе, проведение ремонтных или технических работ проводить только на разгруженном по давлению трубопроводе.

2.3.4 Для установки расходомера на объекте необходимо:

- наличие свободного участка на трубопроводе для установки расходомера;

– наличие прямолинейных участков трубопровода требуемой длины до и после места установки расходомера;

– наличие места для размещения РШ и ППК в удобном для пользователя положении.

2.3.5 Для исключения или снижения влияния искажений профиля скорости потока газа в измерительном сечении УПР до и после него устанавливают прямолинейные цилиндрические участки ИТ, имеющие внутреннее сечение, длина которых должна соответствовать требованиям, указанным в Приложении Д.

2.3.6 Место установки УПР на трубопроводе выбирают с учетом необходимости обеспечения его защиты от ударов, механических воздействий, производной вибрации и внешних магнитных полей.

В Ультразвуковой преобразователь расхода может быть установлен на измерительном трубопроводе как горизонтально, так и вертикально.

В случае горизонтальной установки измерительный корпус должен быть сориентирован таким образом, чтобы плоскости, образуемые измерительными лучами, были бы горизонтальными. Это сводит к минимуму попадание имеющихся в трубопроводе загрязнений в отверстия приемопередатчиков.

Вертикальная установка возможна только в случае, если измерительная система используется для сухих газов без образования конденсата. Газовый поток не должен содержать посторонних включений, пыли и жидкостей. В противном случае предусмотреть фильтры и уловители.

Рекомендуется соблюдать следующие меры по снижению влияния на показания УПР пульсаций расхода и давления газа:

- обеспечить устойчивую работу регуляторов при их наличии на СИКГ;

- регуляторы давления без шумоглушителя, работающие на критическом давлении располагать после УПР;

- при уровне пульсаций, превышающих пределы устанавливаемые заводом изготовителем (Соотношение сигнал/шум менее 14Дб), использовать демпфер или глушитель пульсаций.

ВНИМАНИЕ! Запрещается располагать УПР вблизи нагревательных приборов, а также в местах возможного скопления воды.

2.3.7 Расстояние между УПР размещенным на прямолинейном участке трубопровода и первичным преобразователем температуры должно быть не менее 1 DN и не более 5 DN.

2.3.8 Монтаж расходомера

2.3.8.1 После распаковки расходомера проверить комплектность поставки согласно упаковочной ведомости и паспорта ТУАС.407252.001 ПС. Ознакомиться с настоящим руководством по эксплуатации.

2.3.9 Монтаж УПР

2.3.9.1 Провести внешний осмотр изделия:

- убедиться в отсутствии видимых механических повреждений;

- проверить целостность жидкокристаллического экрана и элементов управления;

 визуально проверить состояние контактов внешних разъемов изделия, изломы, погнутости, подгорания и отсутствие контактов не допускается;

– проверить состояние кабелей связи с первичными преобразователями давления и температуры;

- проверить наличие и целостность пломб предприятия-изготовителя;

– изделие с наличием механических повреждений, повреждений органов индикации и управления или их отсутствием, а также с дефектами внешних разъемов, нарушенными пломбами к эксплуатации не допускается и подлежит замене в условиях предприятия-изготовителя.

2.3.9.2 Монтаж расходомера производить с учетом действующих строительных норм и правил.

2.3.9.3 Схемы монтажа приведены в приложении Д.

2.3.9.4 Монтаж расходомера выполнять в следующей последовательности:

 подводящую часть трубопровода тщательно очистить от окалины, ржавчины, песка и других твердых частиц;

– проконтролировать правильность стыковки привариваемых труб и ниппелей по внутреннему диаметру;

- выполнить сварочные работы по установке ответных фланцев;

ВНИМАНИЕ! Запрещается проводить монтаж ответных фланцев при установленном на трубопровод расходомере. Для этих целей использовать проставку.

– установить расходомер, закрепив его на трубопроводе, либо при помощи накидных гаек, болтов, шпилек в зависимости от используемой конструкции, обеспечив полное сопряжение ответных фланцев (отсутствие уступов и перекосов);

ВНИМАНИЕ!

1) Прибор исполнения С крепится к трубопроводу шпильками, входящими в монтажный комплект расходомера.

2) В качестве уплотнения для герметичного соединения фланцевых поверхностей расходомер с фланцами трубопровода могут использоваться прокладки из различных материалов, допущенных к применению в газовом хозяйстве. Уплотнительные прокладки должны иметь ровные края и не выступать внутрь трубопровода.

3) Не допускается проведение сварочных работ на трубопроводе в районе фланцев расходомера после его установки на трубопровод.

2.3.10 Монтаж вычислителя (Суперфлоу-23 или Расход-1)

2.3.10.1 Провести внешний осмотр изделия:

- проверить комплектность согласно эксплуатационной документации на изделие;

- убедиться в отсутствии видимых механических повреждений;

 визуально проверить состояние контактов внешних разъемов изделия, изломы, погнутости, подгорания и отсутствие контактов не допускается;

– проверить состояние кабелей связи с первичными преобразователями давления и температуры;

- проверить наличие и целостность пломб предприятия-изготовителя;

– изделие с наличием механических повреждений, повреждений органов индикации и управления или их отсутствием, а также с дефектами внешних разъемов, нарушенными пломбами к эксплуатации не допускается и подлежит замене в условиях предприятия-изготовителя.

2.3.10.2 Монтаж производить в соответствии с эксплуатационной документацией на вычислитель.

2.3.11 Монтаж РШ

2.3.11.1 Провести внешний осмотр РШ:

- убедиться в отсутствии видимых механических повреждений;

- проверить целостность жидкокристаллического экрана и элементов управления;

 визуально проверить состояние контактов внешних разъемов изделия, изломы, погнутости, подгорания и отсутствие контактов не допускается;

- проверить наличие и целостность пломб предприятия-изготовителя;

 изделие с наличием механических повреждений, повреждений органов индикации и управления или их отсутствием, а также с дефектами внешних разъемов, нарушенными пломбами к эксплуатации не допускается и подлежит замене в условиях предприятия-изготовителя.

2.3.11.2 Монтаж РШ производится в вертикальном положении в месте, определенном проектной документацией, с учетом эксплуатационных ограничений п. 2.1, в следующей последовательности:

- установить РШ при помощи петель на предварительно подготовленные места крепления;

– соединить клемму заземления с главной заземляющей шиной (главным заземляющим зажимом) предварительно оконцованным медным проводом сечением не менее 4,0 мм² (ГОСТ Р 50571.10, ГОСТ 10434);

- подключить сетевой шнур к разъему сетевого питания.

2.3.11.3 Монтаж соединительного кабеля производится по «трассе», определенной проектной документацией, с учетом эксплуатационных ограничений п.2.1, в следующей последовательности:

– размотать кабель по всей длине и втянуть при помощи приспособления в защитную гофрированную трубу;

– распаять предварительно подготовленные жилы кабеля к разъему LTW 12 – 08BFFA со стороны блока УПР, и к разъему DB9-F со стороны РШ в соответствии со схемой в приложении В;

 подготовить экранирующую оплетку сигнального кабеля путем обрезания ее со стороны блока УПР вместе с изолирующей наружной оболочкой кабеля, после чего место среза заизолировать. Со стороны РШ оставить свободным участок оплетки длиной около 20 см;

- со стороны РШ припаять экранирующую оплетку у основания к корпусу разъема DB-9F;

– подсоединить разъемы сигнального кабеля к блоку УПР и к РШ.

2.3.11.4 После выполнения всех монтажных работ подключить вилку сетевого шнура к розетке питающей сети непосредственно или через блок грозозащиты, включить питание расходомера и проверить его работоспособность.

2.3.11.5 Схема подключения УПР и РШ приведена в приложении Г.

2.3.12 Монтаж ППК

2.3.12.1 Монтаж ППК производится в вертикальном положении в месте, определенном проектной документацией, с учетом эксплуатационных ограничений п. 2.1, в следующей последовательности:

– установить ППК при помощи четырех болтов крепления через специализированные отверстия на задней стенке корпуса на предварительно подготовленные места;

– соединить клемму заземления с главной заземляющей шиной (главным заземляющим зажимом) предварительно оконцованным медным проводом сечением не менее 4,0 мм² (ГОСТ Р 50571.10, ГОСТ 10434-82);

– подключить сетевой шнур к разъему сетевого питания.

2.3.12.2 Монтаж соединительного кабеля производится по «трассе», определенной проектной документацией, с учетом эксплуатационных ограничений п. 2.1, в следующей последовательности:

– размотать кабель по всей длине и втянуть при помощи приспособления в защитную гофрированную трубу;

- распаять предварительно подготовленные жилы кабеля;

– подготовить экранирующую оплетку сигнального кабеля путем обрезания ее со стороны блока УПР вместе с изолирующей наружной оболочкой кабеля, после чего место среза заизолировать;

– подсоединить разъемы сигнального кабеля к блоку УПР и к ППК.

2.3.12.3 После выполнения всех монтажных работ подключить вилку сетевого шнура к розетке питающей сети непосредственно или через блок грозозащиты, включить питание расходомера и проверить его работоспособность.

2.4 Пуск расходомера

2.4.1 Перед пуском расходомера необходимо:

– изучить настоящее руководство по эксплуатации и эксплуатационные документы на дополнительное оборудование;

- проверить правильность монтажа составных частей расходомера и соединительного кабеля;

– проверить правильность подключения дополнительного оборудования.

2.4.2 Включение питания расходомера осуществляется автоматически при подключении к внешнему источнику питания (12-30 В). При включении расходомера на показывающем устройстве отображается информация с заводским номером прибора, номером микроконтроллера, версией программного обеспечения (ПО) и датой выхода ПО.

2.4.3 При включении питания расходомера происходит процесс восстановления архива.

ВНИМАНИЕ! Во избежание сбоев и потери данных запрещается допускать перебои в электропитании (выключать расходомер) до окончания процесса восстановления архива.

2.4.4 Включение питания расходомера с использованием РШ производится клавишами переключателя «220 В» и переключателя «АКБ», расположенными на нижней панели РШ (Приложение Б). Обе клавиши должны находиться в положении І. В этом случае аккумуляторная батарея работает в буфере с сетевым блоком питания. При наличии питания загораются индикаторы

на передней панели РШ «СЕТЬ», «ПИТАНИЕ», «УПР», «ЗАРЯД» (при заряде АКБ), «МОДЕМ» (при наличии).

Выключение питания расходомера осуществляется переводом клавиш переключателя «220 В» и переключателя «АКБ» в положение 0.

При отсутствии сети с напряжением 220 В предусмотрена возможность подключения внешнего источника постоянного тока напряжением от 12 до 15 В. Подключение осуществляется кабелем, который в стандартный комплект поставки не входит и может быть заказан дополнительно. Для работы в данном режиме необходимо подключить кабель и подать напряжение, прибор включится автоматически.

При питании от автономного источника питания переключатель АКБ перевести в положение I, при этом загораются индикаторы «ПИТАНИЕ», «УПР», «МОДЕМ» (при наличии).

2.4.5 Включение питания расходомера с использованием ППК производится клавишей переключателя «220 В» расположенной на нижней панели ППК, при этом клавиша должна находиться в положении І. В этом случае аккумуляторная батарея работает в буфере с сетевым блоком питания. При наличии питания загорается индикатор наличия 220 В, расположенный на нижней панели ППК, и происходит загрузка ПО отображаемая на сенсорном экран.

Выключение питания расходомера осуществляется переводом клавиш переключателя «220 В» в положение 0.

При отсутствии сети с напряжением 220 В предусмотрена возможность работы от резервного источника постоянного тока напряжением от 12 до 15 В, расположенного внутри корпуса ППК. Подключение осуществляется автоматически.

2.4.6 Установить настраиваемые потребителем и поставщиком газа параметры в соответствии паспортом физико-химических показателей газа.

2.4.7 При наличии расхода в системе убедиться в наличии индикации измеряемых параметров на ЭБ, а также на РШ или ППК.

2.4.8 После монтажа и проверки работоспособности расходомера, сделать отметку в разделе «Сведения о вводе в эксплуатацию» Паспорта.

2.5 Применение расходомера с использованием РШ

2.5.1 При использовании изделия должны соблюдаться меры безопасности, изложенные в п. 2.2.1 настоящего РЭ.

Перед включением расходомера необходимо:

3 изучить настоящее РЭ и эксплуатационные документы на дополнительное оборудование;

4 проверить правильность монтажа составных частей расходомера и соединительного кабеля;

5 проверить правильность подключения дополнительного оборудования.

Включение питания расходомера осуществляется автоматически при подключении к внешнему источнику питания (12-30 В). При включении расходомера на показывающем устройстве отображается информация с заводским номером прибора, номером микроконтроллера, версией программного обеспечения (ПО) и датой выхода ПО.

При включении питания расходомера происходит процесс восстановления архива.

ВНИМАНИЕ! Во избежание сбоев и потери данных запрещается допускать перебои в электропитании (выключать расходомер) до окончания процесса восстановления архива.

2.5.2 Включение питания расходомера с использованием РШ производится клавишами переключателя «220 В» и переключателя «АКБ», расположенными на нижней панели РШ (рисунок Б.3 приложения Б). Обе клавиши должны находиться в положении І. В этом случае аккумуляторная батарея работает в буфере с сетевым блоком питания. При наличии питания на передней панели РШ светятся индикаторы «СЕТЬ», «ПИТАНИЕ», «УПР», «ЗАРЯД» (при заряде АКБ), «МОДЕМ» (при наличии).

Выключение питания расходомера осуществляется переводом клавиш переключателя «220 В» и переключателя «АКБ» в положение 0.

При отсутствии сети с напряжением 220 В предусмотрена возможность подключения внешнего источника постоянного тока напряжением от 12 до 15 В. Подключение осуществляется кабелем, который в стандартный комплект поставки не входит и может быть заказан дополнительно.

Для работы в данном режиме необходимо подключить кабель и подать напряжение, прибор включится автоматически.

При питании от автономного источника питания переключатель АКБ перевести в положение I, при этом светятся индикаторы «ПИТАНИЕ», «УПР», «МОДЕМ» (при наличии).

При наличии расхода в системе убедиться в наличии индикации измеряемых параметров на ЭБ или РШ.

После монтажа и проверки работоспособности расходомера, сделать отметку в разделе «Сведения о вводе в эксплуатацию» Паспорта.

2.5.3 Проверка работоспособности расходомера с РШ

Работа с расходомером производится при помощи клавиатуры и ЖКИ, расположенного в УПР или на передней панели расходомерного шкафа (рисунки Б.1 и Б.3 приложения Б).

Контроль работы расходомера и просмотр текущих значений измеряемых параметров осуществляется при помощи ЖКИ и элементов управления с помощью стилуса.

ЖКИ расходомера разделен на 3 основные зоны:

- дата/время;

- контролируемый параметр;

- контроль состояния прибора.

Просмотр всех параметров осуществляется клавишами [↑] [↓] при воздействии на элементы управления с помощью стилуса и пролистываются по кругу, сохраняя индикацию до очередного воздействия на элементы управления.

Параметры на ЖКИ отображаются с автоматической сменой наименования и условного обозначения характеристики.

Внешний вид экранов ЖКИ расходомера представлен на рисунке 2.1.

Рисунок 2.1

Зона контролируемых параметров позволяет просмотреть:

- расход газа, приведенный к стандартным условиям (Q_c), м³/ч;
- рабочий расход газа (Q_r), м³/ч;
- − температура газа (Т_г), °С;
- давление абсолютное (P_a), МПа;
- давление избыточное (P_и), МПа;
- коэффициент сжимаемости (Ксж);
- скорость потока (V_п), м/с;
- скорость звука (V_{зв}), м/с;
- нештатные ситуации (Код HC);
- время работы (Тр), ДД ЧЧ:ММ:СС (где ДД количество дней, ЧЧ количество часов,

ММ – количество минут, СС – количество секунд);

– время НС (THC), ДД ЧЧ:ММ:СС (где ДД – количество дней, ЧЧ – количество часов, ММ – количество минут, СС – количество секунд);

- накопленный объем в рабочих условиях (Vp.y.), м³;
- накопленный объем в стандартных условиях (Vc.y.), м³.

Зона контроля состояния прибора позволяет просмотреть:

– 🔲 - уровень заряда батареи;

– У уровень связи модема (модем отключен при отсутствии иконки);

– с - отсутствие связи с первичным преобразователем;

– - - попытка подключения по GPRS;

_ 🖪 - GPRS подключен;

- **В** - Bluetooth подключен.

2.5.4 Работа с расходомером с использованием РШ

Контроль работы расходомера, настройка, распечатка отчетов, просмотр архива и информации о текущих значениях измеряемых параметрах осуществляется с использованием РШ производится при помощи клавиатуры и ЖКИ и индикаторов расположенных на передней панели РШ.

Выбор единицы измерения осуществляется с помощью клавиш [\leftarrow] [\rightarrow]. Смена единицы измерения параметров доступна в любом пункте меню и отражается только на ЖКИ (т.е. в архивах единица измерения остается неизменной – МПа) и необходима только для удобства пользователя.

Для корректных показаний вычислителя (расход, температура, давление) необходима наработка прибора в течение 10 мин.

После включения питания на ЖКИ расходомера автоматически отображаются текущие значения. Просмотр всех текущих значений осуществляется с помощью клавиш [↑] [↓]:

- расход газа, приведенный к стандартным условиям;

11:27:11 10.04.2014 Qc=0.762 м³/ч

рабочий расход газа;

11:25:45 10.04.2014 M[°]/n $Q_p = 0.044$

накопленный объем в стандартных условиях;

- накопленный объем в рабочих условиях;

^{11:25:45} 10.04.2014 $V_{\Sigma p}$ =3193231 M^3

- накопленный обратный объем в стандартных условиях;

- накопленный обратный объем в рабочих условиях;

11:25:45	10.04.2014
VΣpo	о=2438 м³

- накопленный разностный объем в стандартных условиях;

накопленный разностный объем в рабочих условиях;

температура газа;

абсолютное давление измеряемой среды;

избыточное давление измеряемой среды;

скорость потока;

скорость звука;

11:26:09 10.04.2014
$$V_{3B}=343.34$$
 M/C

- коэффициент сжимаемости;

- код нештатной ситуации от ПП (BP-20);

код нештатной ситуации от ВР (РШ);

10.04.2014 11:27:03 HC_{BP}:0000

- время работы расходомера с момента запуска в работу.

11:20:31	10.04.2014
$t_{Hap} = \frac{165}{30}$	час иин сек

Примечание – Для параметров «Давление» и «Температура» возможна смена единиц измерения:

- 1) для давления МПа, кПа, кгс/см², атм, мм рт.ст, мм в.ст, бар;
- 2) для температуры С, К, F.

В первой строке дисплея отображаются:

1) текущие значения времени и даты;

2) символы служебной информации:

- символы «VL» - при наличии сбоя питания (выводится сообщение «Внимание! Низкое напряжение» и расходомер прекращает вести архивы);

- символ «Е» - при отсутствии связи с УПР;

- символ «С» - при наличии сообщения от УПР (не влияет на работу расходомера);

- символы «НР» - при наличии НС от УПР;

- символы «HB» - при наличии HC от BP (когда значения по параметрам выходят за пределы min и max).

Для просмотра конкретного текущего значения необходимо использовать клавиши с [0] по [9]:

[1] – текущий расход газа (приведенный к стандартным условиям – Q_c, рабочий – Q_p (при повторном нажатии) м³/ч);

[2] – суммарный стандартный объем (V_{Σ} с), м³;

- [3] суммарный рабочий объем ($V_{\Sigma}c$), м³;
- [4] суммарный объем за текущие сутки (V_c, м³);
- [5] суммарный объем за предыдущие сутки (V_c, м³);
- [6] суммарный объем с начала эксплуатации (V_c, м³);
- [7] абсолютное давление измеряемой среды (Р_а, МПа);
- [8] избыточное давление измеряемой среды (Р_и, МПа);
- [9] суммарный объем за текущий месяц (V_c, м³);
- [0] суммарный объем за прошлый месяц (V_c, м³).

Управление работой расходомера осуществляется через основное меню (рисунок 2.2).

Вход в систему «Основное меню» осуществляется нажатием клавиши [ВВОД], перемещение между пунктами - с помощью клавиш [↑] [↓], вход в выбранный пункт и подпункты - с помощью нажатия клавиши [ВВОД]. Выход в предыдущий пункт меню осуществляется клавишей [С].

Пункт «Печать» предназначен для вывода данных на устройство печати и состоит из следующих подпунктов (рисунок 2.3).

Для входа в подменю «Печать» необходимо выбрать его в списке и подтвердить выбор нажатием [ВВОД].

	Основное меню
Печать	
Архив	

В открывшемся окне выбрать необходимый пункт.

Подключить соединительный кабель принтера к разъему «Печать» на нижней панели РШ.

ВНИМАНИЕ! Подключение принтера производить в следующей последовательности:

1) убедиться, что принтер не подключен к сети питания (обесточен);

2) подключить соединительный кабель принтера к разъему «Печать» на нижней панели РШ;

3) только после этого подключить питающий кабель принтера к сети и включить питание принтера клавишей POWER.

1) Пункт «Текущие» обеспечивает вывод на печать мгновенных показаний вычислителя.

<	Печать	
Текущ	ие	
Почас	овые данные	

Turbo Flow UFG-F

Распечатка отчета происходит после подтверждения выбора клавишей [ВВОД], при этом на ЖКИ отображается:

После завершения печати на дисплей выводится сообщение о завершении печати и происходит автоматический возврат в пункт меню «Печать».

ена	
	ена

Пример распечатки текущих параметров приведен в Приложении М, таблица М.1

2) Пункт «Почасовые данные» обеспечивает вывод на печать данных за каждый час выбранной даты.

Для печати почасового отчета необходимо выбрать соответствующий подпункт меню в пункте «Печать» и подтвердить выбор нажатием клавиши [ВВОД]:

<	Печать
Текущие	
Почасов	ые данные

В открывшемся окне установить дату и (или) время начала отчетного периода. Изменение времени / даты осуществляется с помощью клавиш [0] - [9], перемещение между цифрами – с помощью клавиш [←] [→]. Активная цифра выделяется подчеркиванием.

Для распечатки отчета необходимо еще раз нажать клавишу [ВВОД], после чего на дисплее появляется сообщение о печати документа.

<	Печать	-
Текуш	Сообщение	
Почас	Печать документа	

В результате будут распечатаны следующие параметры:

- Vc, м³ - накопленный объем, приведенный к стандартным условиям;

- Vc.рев, м³ накопленный реверсивный объем, приведенный к стандартным условиям;
- dVc, м³ разностный объем, приведенный к стандартным условиям;
- Vвост, м³ восстановленный объем, приведенный к стандартным условиям;
- Т, °С температура газа;
- Р, МПа давление газа;
- НС код нештатной ситуации.

Пример распечатки почасовых данных приведен в Приложении М, таблица М.2.

При наличии нештатных ситуаций за указанный промежуток времени после распечатки отчета почасовых данных автоматически распечатывается отчет по нештатным ситуациям.

Руководство по эксплуатации

3) Пункт «Посуточные данные» обеспечивает вывод на печать данных за каждые сутки выбранного периода времени. Для печати отчета посуточных данных необходимо выполнить действия аналогичные описанные в п. 2.

Пример распечатки посуточных данных приведен в Приложении М, таблица М.З.

4) Пункт «Архив событий» обеспечивает вывод на печать архива изменений за определенный промежуток времени. Для печати отчета необходимо выполнить действия аналогичные описанные в п. 2.

Пример распечатки архива событий приведен в Приложении М, таблица М.4.

5) Пункт «База настроек» позволяет получить отчет в реальном времени по всем настраиваемым параметрам расходомера. Для получения отчета необходимо выполнить действия аналогичные описанные в п. 1.

Пример распечатки базы настроек приведен в Приложении М, таблица М.5.

После завершения печати любого из отчетов происходит автоматический возврат в меню «Печать».

6) Пункт «Архив HC» обеспечивает вывод на печать архива нештатных ситуаций за определенный промежуток времени. Для печати отчета необходимо выполнить действия аналогичные описанные в п. 2.

Пример распечатки архива НС в Приложении М, таблица М.6.

7) Пункт «Интервальный архив» обеспечивает вывод на печать интервального архива с учетом установленных даты начала и окончания, номера (от 0 до 1439) и количества (от 1 до 36) записей. Для этого необходимо выполнить поиск по номеру записи в пункте меню «Поиск по номеру» или поиск по дате в пункте меню «Поиск по дате». Для печати отчета необходимо выполнить действия аналогичные описанные в п. 2. Поиск по дате может занимать время до 15 минут.

Пункт меню «Архив» предназначен для быстрого просмотра суммарных значений расхода за предыдущие 12 месяцев (рисунок 2.4).

Архив	
	— Данные за месяц
	— Данные за день
	— Данные за час
	Данные за интервал

Для входа в подменю «Архив» необходимо выбрать его в списке и подтвердить выбор нажатием [ВВОД]; в открывшемся окне выбрать необходимый пункт.

<	Архивные данные
Данные за	месяц
Данные за	день

1) Для просмотра данных за месяц необходимо выбрать соответствующий пункт и подтвердить выбор клавишей [ВВОД].

В открывшемся окне установить месяц отчетного периода. Изменение календарного номера месяца осуществляется с помощью клавиш [0] - [9], перемещение между цифрами – с помощью клавиш [←] [→]. Активная цифра выделяется подчеркиванием.

	< Архивные данные	•
Ланнь	Введите месяц	
Даннь	0 <u>4</u> .15	
L I		

Повторным нажатием клавиши [ВВОД] на дисплей выводится сообщение:

После обработки информации отображаются следующие архивные данные:

- Vp, м³ накопленный объем в рабочих условиях;
 Vcт, м³ накопленный объем, приведенный к стандартным условиям;
- Vвос раб, м³ восстановленный объем в рабочих условиях;
- Vвос ст, м³ восстановленный рабочий объем, приведенный к стандартным условиям;
- Vсум раб, м³ суммарный объем в рабочих условиях;
- Vсум ст, м³ суммарный объем, приведенный к стандартным условиям;
- Vp рев, м³ накопленный реверсивный объем в рабочих условиях;

- Vст рев, м³ - накопленный реверсивный объем, приведенный к стандартным условиям;

- Vвос раб рев, м³ - восстановленный реверсивный объем в рабочих условиях;

- Vвос ст рев, м³ - восстановленный реверсивный рабочий объем, приведенный к стандартным условиям;

- Vсум раб рев, м³ суммарный реверсивный объем в рабочих условиях;
- Vсум ст рев, м³ суммарный реверсивный объем, приведенный к стандартным условиям;
- Т, °С температура газа;
- Р. МПа давление газа;
- Ксж коэффициент сжатия;
- Кпер коэффициент перевода;
- Код HC код нештатной ситуации;
- Тнс n, сек продолжительность HC.

01.04.15г. 08ч – 01.05.15г. 08ч			
Vp, м ³	Vст, м ³	Vвос	
3533.000	10184.522	343	

Перемещение по списку отображаемых данных осуществляется с помощью клавиш [←] [→].

01.04.15г. 08ч – 01.05.15г. 08ч			
V вос раб, м ³	V вос ст, м ³		
3433.000	10184.522		

Для выхода из подменю необходимо нажать клавишу [С].

2) Пункт «Данные за день» обеспечивает просмотр данных за каждый день выбранного периода времени. Для просмотра данных необходимо выполнить действия аналогичные описанным в пп 1

3) Пункт «Данные за час» обеспечивает просмотр данных за каждый час выбранного периода времени. Для просмотра данных необходимо выполнить действия аналогичные описанным в пп.1.

4) Пункт «Данные за интервал» обеспечивает просмотр данных за указанный период времени.

Для просмотра данных за выбранный период времени необходимо выбрать соответствующий пункт и подтвердить выбор клавишей [ВВОД].

В открывшемся окне установить дату и время начала отчетного периода. Установка времени / даты осуществляется с помощью клавиш [0] - [9], перемещение между цифрами – с помощью клавиш [\leftarrow] [\rightarrow]. Активная цифра выделяется подчеркиванием.

ООО НПО «Турбулентность – ДОН»

<	Архивнь	ые данны	е
Данн	Дата нач	ала	
Данн	09.04.2015	12	

Информация о конце отчетного периода устанавливается после повторного нажатия клавиши [ВВОД]:

<	Архивные	е данны
Данны	Дата оконча	ния
Данн	10.04.2015	12

Для выхода из подменю необходимо нажать клавишу [С].

Для вывода на печать данных из пункта меню «Архив» необходимо выбрать соответствующий пункт и подтвердить выбор клавишей «.».

Пункт «Состав газа» предназначен для ввода составляющих компонентов газа в процентном отношении в соответствии с паспортом физико-химических показателей газа и последующего их просмотра.

Изменение метода пересчета расхода из рабочих условий в стандартные осуществляется по трем алгоритмам:

- «ВНИЦ СМВ» (Метан, Этан, Пропан, н-Бутан, Изобутан, Азот, Диоксид углерода, Сероводород);
- «GERG-91 мод.» (Плотность, Азот, Диоксид углерода);
- «Ксж».

И выполняется в следующей последовательности:

- в подменю «Настройки» выбрать пункт «Состав газа» и подтвердить нажатием [ВВОД];

- выбрать клавишами [↑] [↓] параметр «Метод расчета» и подтвердить нажатием [ВВОД];

/		
	Выберите метод расчета	
Метс	ВНИЦ СМВ	
ксж ч		

– повторным нажатием клавиши [ВВОД] активизируется режим выбора варианта метода расчета.

<		CARTOR FOOD	
Mora	Вы(берите метод расчета	
Merc	<	ВНИЦ СМВ	
			•

<		Contar Fasa		
Выберите метод расчета				
метс	<	Gerg-91 мод.	>	
КСЖ				

<	Давл	ение
Метс	Pac	счет К сж
Ксж	< Подо	становка К сж

Клавишами [←] [→] ввести выбранный вариант метода расчета и подтвердить нажатием [ВВОД]. На дисплее появится сообщение об изменении параметра.

Для выхода из подменю необходимо нажать клавишу [С].

Ввод значения коэффициента сжимаемости выполняется в следующей последовательности:

- в подменю «Настройки» выбрать пункт «Состав газа» и подтвердить нажатием [ВВОД];
- выбрать клавишами [↑] [↓] параметр «Ксж» и подтвердить нажатием [ВВОД];

<	Состав газа
Мето	д расчета
Ксж	
<	Ксж
Мето	1.000
КСЖ	

 переключение в режим редактирования осуществляется с помощью повторного нажатия клавиши [ВВОД], после чего активная цифра выделяется подчеркиванием. Изменение значений осуществляется с помощью клавиш [0]-[9], перемещение между цифрами – с помощью клавиш [←] [→].

После установки значения нажать клавишу [ВВОД], на дисплей выводится сообщение об изменении параметра.

Для выхода из подменю необходимо нажать клавишу [С].

Примечание – Значение коэффициента сжимаемости доступно для изменения в случае, если выбран соответствующий метод пересчета расхода из рабочих условий в стандартные, в противном случае на ЖКИ появится сообщение о необходимости изменения метода расчета.

Ввод и изменение значений, процентного содержания компонентов состава газа могут быть произведены только комиссионно в присутствии представителей поставщика и потребителя после ввода паролей Поставщика и Потребителя.

Ввод компонентов состава газа для метода GERG-91 мод. (ГОСТ 30319.1-96, ГОСТ 30319.2-96) выполняется в следующей последовательности:

- в подменю «Настройки» выбрать пункт «Состав газа» и подтвердить нажатием [ВВОД];
- выбрать клавишами [↑] [↓] параметр «GERG-91 мод.» и подтвердить нажатием [ВВОД];

<	Состав газа
Ксж	
GERO	5-91 мод.
	GERG-91 мод.
Плот	ность
Азот	

- клавишами [↑] [↓] выбрать параметр «Плотность» и подтвердить нажатием [ВВОД];

– ввод параметра осуществляется с помощью повторного нажатия клавиши [ВВОД], после чего активная цифра выделяется подчеркиванием (режим редактирования). Изменение значений – клавишами [0]-[9], перемещение между цифрами – с помощью клавиш [←] [→].

После установки значения нажать клавишу [ВВОД], на дисплей выводится сообщение об изменении параметра.

Для выхода из подменю необходимо нажать клавишу [С].

Для просмотра и редактирования компонентов «Азот», «Диоксид углерода» необходимо выполнить действия аналогичные описанные выше для параметра «Плотность».

Ввод компонентов состава газа для метода ВНИЦ СМВ (ГОСТ 30319.1-96, ГОСТ 30319.2-96) выполняется в последовательности аналогичной описанной выше для метода GERG-91 мод.

Проверка состава газа выполняется в следующей последовательности:

- в подменю «Настройки» выбрать пункт «Состав газа» и подтвердить нажатием [ВВОД];

ООО НПО «Турбулентность – ДОН»

Руководство по эксплуатации

- выбрать клавишами [↑] [↓] параметр «Проверка состава» и подтвердить нажатием [ВВОД].

Если компонентный состав газа соответствует выбранному методу, то отображается сообщение «Состав газа соответствует». Если компонентный состав газа не соответствует выбранному методу, то отображается сообщение «Ошибка. Сумма компонентов х.ххх%».

Пункт меню «Пароли» предназначен для изменения четырехзначных паролей, в дальнейшем ограничивающих несанкционированный доступ к настройкам вычислителя и состоит из подпунктов «Поставщик» и «Потребитель».

Изменение паролей выполняется в следующей последовательности:

- нажатием клавиши [ВВОД] войти в систему меню;

Основное меню	
Состав газа	>
Пароли	>

- клавишами [↑] [↓], выбрать пункт «Пароли» и подтвердить выбор нажатием клавиши [ВВОД];

- выбрать с помощью клавиш [↑] [↓] один из подпунктов «Поставщик» или «Потребитель» и подтвердить выбор, нажатием [ВВОД], после чего на дисплей выводится запрос о вводе пароля. С помощью клавиш [↑] [↓] необходимо ввести пароль по умолчанию (1111 - «Поставщик» и 2222 - «Потребитель») и подтвердить набор пароля нажатием [ВВОД].

После подтверждения пароля на дисплей выводится мгновенное сообщение об изменении пароля и следом выводится запрос на ввод нового пароля.

<	Управление паролями	I
Поста	Сообщение	
Потре	Пароль изменен	
	Управление паролями	
<	Управление паролями Введите новый пароль	

Ввести новый четырехзначный пароль с помощью клавиш [0] - [9] и подтвердить набор пароля нажатием [ВВОД].

После подтверждения пароля на дисплей выводится мгновенное сообщение об его изменении.

ВНИМАНИЕ! В случае утраты одного из паролей необходимо сообщить заводуизготовителю серийный номер вычислителя расхода, указанный в паспорте. Для разблокировки будет сгенерирован и выслан резервный пароль, позволяющий сменить утраченный пароль Поставщика или Потребителя. Пункт меню «Часы» предназначен для установки времени и даты. Установка времени и даты производится в следующей последовательности:

нажатием клавиши [ВВОД] войти в систему меню;

- выбрать клавишами [↑] [↓] подменю «Часы» и подтвердить выбор нажатием клавиши [ВВОД].

В открывшемся окне установить текущую дату и время. Переключение в режим редактирования осуществляется с помощью повторного нажатия клавиши [ВВОД]. Установка времени / даты осуществляется с помощью клавиш [0] - [9], перемещение между цифрами – с помощью клавиш [←] [→]. Активная цифра выделяется подчеркиванием.

Для подтверждения введенных значений нажать [ВВОД]. На дисплей выводится сообщение об изменении параметра.

Пункт меню «Настройки» предназначен для ввода настроечных параметров объекта (рисунок 2.5).

Вход в подменю «Настройки» и дальнейшая работа в нем выполняется в следующей последовательности:

- в системе «Основное меню» выбрать пункт «Настройки» и подтвердить выбор нажатием [ВВОД];

Руководство по эксплуатации

- ввести с помощью клавиш [0] - [9] один из паролей («Поставщик» или «Потребитель») и подтвердить набор пароля нажатием [ВВОД];

- ввести второй пароль и подтвердить набор нажатием [ВВОД].

1) Пункт «Начало суток» предназначен для установки расчетного часа, исходя из которого, в дальнейшем, формируются отчеты о расходе и контролируемых параметрах ресурсов.

Установка часа начала суток выполняется в следующей последовательности:

- выбрать клавишами [↑] [↓] пункт «Начало суток» и подтвердить нажатием [ВВОД];

<	Настройки
Начало	СУТОК
Расчет	ные сутки

- ввести с помощью клавиш [0] - [9] значение расчетного часа и подтвердить набор нажатием [ВВОД];

— для подтверждения введенных значений нажать [ВВОД]. На дисплей выводится сообщение об изменении параметра.

В случае некорректного ввода параметра на ЖКИ выводится сообщение:

<	Настройки	
Нача	Начало суток	
Расч	Значение неверно	

При этом в памяти вычислителя сохраняется последнее корректное значение.

Для возврата в подменю «Настройки» нажать [С]. На экране дисплея появляется сообщение об отмене ввода.

<	Настройки	-
Нач	Сообщение	
Pac _8	Ввод отменен	

Для возврата в подменю «Настройки» необходимо повторно нажать [C].

2) Пункт «Расчетные сутки» предназначен для установки значения параметра «Расчетные сутки» между «Поставщиком» и «Потребителем», исходя из которого, в дальнейшем, формируются отчеты о расходе и контролируемых параметрах ресурсов.

Ввод расчетных суток выполняется в последовательности, аналогичной описанной в п. 1.

3) Пункт «Диапазон» предназначен для установки значений параметров:

- «Qmin» нижний предел измерений рабочего расхода;
- «Tmin» нижний предел измерений температуры газа;
- «Qmax» верхний предел измерений рабочего расхода;
- «Tmax» верхний предел измерений температуры газа;

– «Qотс» - договорное значение рабочего расхода, используемое при накоплении архивных данных при расходах меньше Qmin;

- «Qдог», «Тдог» - договорные значения параметров расхода и температуры соответственно, используемые в случае HC.

ВНИМАНИЕ! Ввод параметров Qmin, Qmax, Qотс, Qдог осуществляется в рабочих м³/ч.
Ввод значений параметров выполняется в следующей последовательности:

- выбрать клавишами [↑] [↓] пункт «Диапазон» и подтвердить выбор нажатием [ВВОД];

- выбрать подпункт «Qмin» или «Qмax» и подтвердить выбор нажатием [ВВОД];

- ввести с помощью клавиш [0] - [9] значение расхода и подтвердить нажатием [ВВОД].

<	Диапа	30H	
Q mir	Q	min	
Q ma	1.00	м3/ч	

Переключение в режим редактирования осуществляется с помощью повторного нажатия клавиши [ВВОД]. Для подтверждения введенных данных нажать [ВВОД]. На дисплей выводится сообщение об изменении параметра.

<	Диапазон	
Q min	Сообщение	
Q max	Параметр изменен	

Для ввода значения следующих параметров повторить описанные выше действия.

ВНИМАНИЕ!

1. Параметр отсечки Qотс предназначен для исключения явления «самохода» при отсутствии расхода газа.

Оргс выбирается исходя из минимального предела чувствительности прибора и по значению должно удовлетворять условию:

$$Q_{\min} / 2 \le Q_{omc} < Q_{\min}$$
 .

2. При мгновенном значении расхода меньше значения Qmin, но больше Qotc, в архив записывается значение Qmin, т.е.

при
$$Q_{omc} \leq Q_{M2H} \leq Q_{\min}$$
, $Q_{M2H} = Q_{\min}$.

3. При значении мгновенного расхода менее значения отсечки Qотс в архив записывается значение Qмгн равное 0, т.е.

при
$$Q_{M2H} < Q_{omc}, Q_{M2H} = 0$$

4. Значение Qдог устанавливается по договоренности между «Поставщиком» и «Потребителем», соблюдая условие:

$$Q_{\partial o z} \leq Q_{\max}$$

и используется для заполнения архива при возникновении нештатных ситуаций.

4) Пункт «Восстановление» предназначен для установки договорных значений:

при Q < Qmin;

- при НС.

Ввод значений выполняется в следующей последовательности:

- в подменю «Настройки» выбрать пункт «Восстановление» и подтвердить выбор нажатием [ВВОД];

< Настройки	
Диапазон >	
Восстановление	>
< Восстановление при НС	
При Q < Qmin	
При НС	

- выбрать параметр «При Q < Q min» и подтвердить выбор нажатием [ВВОД];

< Bo	сстановлен	ие при НС
При С	Qдог при С	отс <q <="" min<="" q="" td=""></q>
При Н	10.00	м3/ч

ВНИМАНИЕ! Значение параметра «При Q<Qmin» должно быть меньше или равно «Qmin».

– изменение параметра осуществляется с помощью повторного нажатия клавиши [ВВОД], после чего активная цифра выделяется подчеркиванием (режим редактирования). Изменение значений – клавишами [0]-[9], перемещение между цифрами – с помощью клавиш [←] [→].

< Вс	осстановлен Одог при (ние при НС Qotc <q <="" min<="" q="" th=""><th></th></q>	
При Н	<u>1</u> 0.00	м3/ч	

После завершения редактирования нажать клавишу [ВВОД], на дисплей выводится сообщение об изменении параметра.

Выбрать параметр «при HC» и подтвердить выбор нажатием [ВВОД].

< Восстановление при НС		
При	Расчет по:	
При	Q дог.	

Повторным нажатием клавиши [ВВОД] активизируется режим выбора варианта значения расхода используемого при нештатной ситуации: Q дог. или Q ср.

Клавишами [\leftarrow] [\rightarrow] ввести выбранный вариант значения расхода и подтвердить нажатием [ВВОД]. На дисплее появится сообщение об изменении параметра.

Для выхода из подменю необходимо нажать клавишу [С].

Примечание – При выборе Qcp, в архив будет записываться среднее значение за прошедший час, отработанный без нештатных ситуаций. Установка значения Qдог описана в пункте «Диапазон».

5) Пункт «Давление» предназначен для установки значений параметров давления:

- «Pmin»;
- «Pmax»;
- «Рбар»;
- «Рдог»;
- «Тип ДД».

Pmin – параметр, значение которого должно соответствовать нижнему пределу измерений применяемого датчика давления; Pmax – параметр, значение которого должно соответствовать верхнему пределу измерений применяемого датчика давления.

В подменю «Настройки» выбрать пункт «Давление» и подтвердить нажатием [ВВОД].

<	Давление
P min	
P max	

Ввод минимального значения давления выполняется в следующей последовательности: Клавишами [↑] [↓] выбрать параметр «Pmin» и подтвердить нажатием [ВВОД].

Ввод параметра осуществляется с помощью повторного нажатия клавиши [ВВОД], после чего активная цифра выделяется подчеркиванием (режим редактирования). Изменение значений – клавишами [0]-[9], перемещение между цифрами – с помощью клавиш [←] [→].

Минимальное значение давления в МПа и подтвердить нажатием [ВВОД]:

После завершения редактирования нажать клавишу [ВВОД], на дисплей выводится сообщение об изменении параметра.

Для выхода из подменю необходимо нажать клавишу [С].

Для ввода параметров «Р max», «Р бар», «Р дог.» необходимо выполнить действия аналогичные описанным выше для ввода параметра «Р min».

Договорное значение давления Рдог. используется для установления значения давления, которое запишется в архив при возникновении нештатной ситуации.

В случае набора некорректного значения, в памяти сохраняется последнее корректное значение.

Изменение типа датчика давления производится в пункте «Тип ДД» и выполняется в следующей последовательности:

– в пункте «Давление» клавишами [↑] [↓] выбрать параметр «Тип ДД» и подтвердить нажатием [ВВОД];

- повторным нажатием клавиши [ВВОД] активизируется режим выбора типа датчика;

 – клавишами [←] [→] ввести выбранный вариант типа датчика и подтвердить нажатием [ВВОД]. На дисплее появится сообщение об изменении параметра.

Для выхода из подменю необходимо нажать клавишу [С].

6) Пункт «Связь» предназначен для настройки параметров связи с преобразователем расхода и АСУТП.

В подменю «Настройки» выбрать пункт «Связь» и подтвердить нажатием [ВВОД]:

< (Связь
Логический	Nº BP
Логический	№ УПР

Клавишами [↑] [↓] выбрать параметр «Логический № ВР» и подтвердить нажатием [ВВОД].

Ввод параметра осуществляется с помощью повторного нажатия клавиши [ВВОД], после чего активная цифра выделяется подчеркиванием (режим редактирования). Изменение значений – клавишами [0]-[9], перемещение между цифрами – с помощью клавиш [←] [→].

Нажатием клавиши [ВВОД] подтвердить выбранное значение, на дисплей выводится сообщение об изменении параметра. По умолчанию, логический № ВР равен 1.

<	Связь	
Логи	Сообщение	
Логи	Параметр изменен	

Для выхода из подменю необходимо нажать клавишу [С].

При выборе параметра «Логический № УПР» необходимо выполнить действия аналогичные описанным для параметра «Логический № ВР». По умолчанию, логический № УПР равен 1.

7) Пункт «Инициализация» предназначен для очистки памяти архива и сброса счетчиков на 0.

ВНИМАНИЕ! Перед инициализацией необходимо провести сем архивных данных на бумажный носитель (в двух экземплярах) или с помощью ПО сохранить в электронном виде. Все действия рекомендовано выполнять в присутствии представителя поставщика газа или при наличии письменного официального разрешения.

Очистка памяти архива и сброс счетчиков на 0 выполняется в следующей последовательности: — в подменю «Настройки» выбрать пункт «Инициализация» и подтвердить нажатием [ВВОД];

<	Настройки	
Связ	Ь	>
Инициализация		

— в открывшемся окне необходимо подтвердить либо опровергнуть решение об инициализации;

Согласие на инициализацию необходимо подтвердить клавишей [ВВОД]. После нажатия клавиши [ВВОД] произойдет форматирование памяти вычислителя и сброс архивных значений.

внимание!

1) Восстановление архивных значений после форматирования – невозможно.

2) Форматирование производится не более 5 мин.

3) Форматирование производится в течение не более 5 мин. До завершения форматирования питание не отключать!

Происходит вывод на ЖКИ нескольких служебных сообщений. По окончанию инициализации выводится сообщение:

После завершения форматирования произойдет автоматический выход в подменю «Настройки».

При отказе от инициализации необходимо нажать [C]. Произойдет автоматический возврат в подменю «Настройки».

8) Пункт «Сброс настроек» предназначен для сброса установленных настроек.

Сброс настроек выполняется в следующей последовательности:

- в подменю «Настройки» выбрать пункт «Сброс настроек» и подтвердить нажатием [ВВОД],

- в открывшемся окне необходимо подтвердить либо опровергнуть решение о сбросе настроек

Turbo Flow UFG-F

Согласие на инициализацию необходимо подтвердить клавишей [ВВОД]. После нажатия клавиши [ВВОД] произойдет сброс настроек.

По окончанию сброса выводится сообщение:

<	Настройки	
Иниц	Сброс настроек	
Сбро	Успешно	

При отказе от сброса настроек необходимо нажать [C]. Произойдет автоматический возврат в подменю «Настройки».

9) Пункт «Период интервального архива» предназначен для настройки периода архивирования данных на носитель (от 60 до 3600 с).

В подменю «Настройки» выбрать пункт «Период интервального архива» и подтвердить нажатием [ВВОД].

<	Настройки
Сбро	с настроек
Пери	од интервального архива
<	
Chno	Период инт-го архива, с
Соро	300
пери	og minepeanenere apanea

Ввод параметра осуществляется с помощью повторного нажатия клавиши [ВВОД], после чего активная цифра выделяется подчеркиванием (режим редактирования). Изменение значений – клавишами [0]-[9], перемещение между цифрами – с помощью клавиш [←] [→].

Нажатием клавиши [ВВОД] подтвердить выбранное значение, на дисплей выводится сообщение об изменении параметра.

<	Настройки	
Chno	Сообщение	
Пери	Параметр изменен	
пери		

Для выхода из подменю необходимо нажать клавишу [С].

Примечание – При вводе значения весь накопленный интервальный архив очищается. Архив рассчитан на 1440 записей, что при периоде архивирования 5 минут составляет 5 суток.

2.6 Применение расходомера с использованием ППК

При использовании изделия должны соблюдаться меры безопасности, изложенные в п. 2.2.1 настоящего РЭ.

2.6.1 Проверка включения расходомера с ППК

Перед включением расходомера необходимо:

- 6 изучить настоящее РЭ и эксплуатационные документы на дополнительное оборудование;
- 7 проверить правильность монтажа составных частей расходомера и соединительного кабеля;

8 проверить правильность подключения дополнительного оборудования.

Для подачи питания на ППК необходимо установить выключатель сети 220 В в положении I, а отключение питания осуществляется переводом выключатель в положение 0.

При отсутствии сети с напряжением 220 В предусмотрена возможность питания от встроенных аккумуляторных батарей.

После подачи питания на экране ППК начнется загрузка программного обеспечения (ПО). В случае успешного запуска ПО на рабочем столе будет отображена основная экранная форма (ЭФ) программы, вид которой представлен на рисунке 2.6.

Рисунок 2.6

- где 1 основное меню программы
 - 2-измеряемые параметры
 - 3 вкладки с режимами работы
 - 4 вспомогательное меню программы с режимами работы

2.6.2 Основное меню программы

Основное меню программы содержит пункты команд, которые обеспечивают доступ к основным функциям программы и ее настройкам. Команды основного меню программы и их краткое описание приведены в таблице 2.1.

Таблица	2.1
---------	-----

Команды	Назначение				
Связь и н	настройки				
🎉 Подключить прибор	Вызов ЭФ «Подключиться к прибору»				
Отключить	Отключение канала связи с прибором				
Шлюз данных TCP/IP	Вызов ЭФ «Шлюз (TCP) обмена данными с приборами», которая позволяет организовать обмен данными между подключенным прибором и другими программами в одной локальной сети				
Настройки программы	Вызов ЭФ управления настройками ПО				
Максимальный размер окна	Увеличение размеров ЭФ до максимального размера дисплея				
🛞 Выход	Завершение работы программы				
Пр	ибор				
Параметры	Переключение на вкладку с параметрами прибора. Дублирует кнопку выбора вкладки.				
Показания	Переключение на вкладку с показаниями прибора. Дублирует кнопку выбора вкладки.				
🕕 Информация	Вызов ЭФ выполняющей запрос и отображение сведений о приборе. Пункт активен, если прибор поддерживает возможность его идентификации (наименование, зав. номер, версия ПО)				
Формирование отчётов	Вызов специальной ЭФ для серии приборов, которая считывает необходимые данные, формирует отчеты и позволяет их напечатать. Пункт активен, если для приборов данного типа реализована ЭФ построения отчетов.				
🗙 Инстр	ументы				
Скорость звука и коэфф. сжим.	Вызов ЭФ, позволяющей выполнять расчеты скорости звука и/или коэффициента сжимаемости смеси газов. Пункт активен для приборов, измеряющих расход/объем природного газа				
Обмен данными	Вызов ЭФ, отображающей подробный обмен данными с прибором				
Выходные цепи UFG BP-20	Настройка параметров частотного и токового выхода				
Обновление ПО ВР-20	Оповещение о доступных обновлениях текущего ПО				

Продолжение таблицы 2.1

Команды	Назначение				
Загрузка/сохранение настроек	Сохранение текущих настроек расходомера на случай диагностики или сбоя				
B	ид				
Показать заголовок с данными	Управление отображением полученных значений в верхней части основной ЭФ				
С Автообновление данных в заголовке •	Включение/выключение автоопроса и задания интервала обновления данных				
Визуализация показаний прибора	Включение/выключение обновления значений на странице «Показания прибора»				
Отображать доп. панель слева	Включение/выключение меню с кнопками быстрого доступа				
[Спр	авка				
Помощь по вкладке "Запись данных"	Вызов диалогового окна со сведениями о вкладке «Запись данных»				
🔤 Помощь по вкладке "Тренды"	Вызов диалогового окна со сведениями о вкладке «Тренды»				
[Помощь по вкладке "Параметры"	Вызов диалогового окна со сведениями о вкладке «Параметры»				
🍅 Помощь по вкладке "Состав газа"	Вызов диалогового окна со сведениями о вкладке «Состав газа»				
О программе	Вызов диалогового окна со сведениями о программе				
История изменений	Вызов ЭФ, позволяющей просмотреть информацию о версиях и изменениях в программе				

2.6.3 Вкладка «Параметры» предназначена для отображения свойств, чтения и изменения значений параметров, осуществляется диагностика состояния и настройка расходомера.

На данной вкладке имеются следующие элементы управления:

предназначен для поиска параметров;

предназначен для записи всех параметров выбранной группы;

「 предназначен для записи измененных параметров выбранной группы;

предназначен для считывания параметров выбранной группы;

— «Считывать при выборе» предназначен для включения/выключения режима периодического запроса значений параметров выбранной группы из устройства;

- «Опрос 2 сек» предназначен для включения периодического опроса (запрос каждые 2 секунды) выбранной группы.

Рабочая область данной вкладки разделена на два поля:

— дерево параметров устройства предназначено для просмотра и навигации по параметрам устройства;

— таблица параметров предназначена для отображения сведений и значений параметров группы, а также признака модификации параметра и результата записи нового значения параметра в устройство.

При выборе параметра «Текущие значения» (рисунок 2.7) в таблице параметров отображаются периодически изменяющиеся значения, по которым можно судить о работоспособности расходомера.

E CE	язь и настройки 🕅	Прибор 🎇 І	Инструменты	📑 Вид ②	Справка			2	
Qct,	м³/ч Qp, м³/ч	T, °C	Рабс, МПа	Ризб, МПа	Vпот, м/с	Код НС	Vст,∎	1 ^s Vc	г,обр [м⁸]
0,0	0,00	27,28	1,138	1,036	0,022	0x00000000	18452	77	19120
×	Параметры Показани	ія прибора Запи	сь данных Тре	нды Архивы Со ачения (параметров: 4 Название	остав газа	Охообб) Тип данных	Доступ	Текущее	Ед. изм.
(0000)			► 0x002C	Расширенные ста	тусы каналов	UInt32	R	0x00000000	
			0x002E	Проценты ошибок	подлучей 0 и 1	UInt 32	R	0x00000000	
	🗹 Считывать при выбо	оре 📃 Опрос 2 се	K 0x0030	Проценты ошибои	подлучей 2 и 3	UInt32	R	0x00000000	
-	BP-20 UFG Visual		0x0032	Проценты ошибок	подлучей 4 и 5	UInt32	R	0x0000000	
	- Текущие значен	ия	0x0034	Проценты ошибои	подлучей 6 и 7	UInt32	R	0x0000000	
	Общие настройки	И	0x0036	Скорость потока	фильтрованная луча О) Float32	R	1,589814	
	— Настроики віцею — Настройки интер	ота офейса и токового	0x0038	Скорость потока	фильтрованная луча 1	Float32	R	1,616366	
	- Выход на связь		0x003A	Скорость потока	фильтрованная луча 2	Float32	R	1,528997	
	Настройки диапа	азонов	0x003C	Скорость потока	фильтрованная луча З	Float32	R	2,002857	
\sim			0x003E	Скорость потока	фильтрованная луча 4	Float32	R	0	_
\sim			0x0040	Скорость потока	фильтрованная луча 5	Float32	R	0	
			0x0042	Скорость потока	фильтрованная луча 6	Float32	R	0	
			0x0044	Скорость потока	фильтрованная луча 7	Float32	R	0	
			0x0046	Скорость звука ф	ильтрованная луча 0	Float32	R	417,115	
			0×0048	Скорость звука ф	ильтрованная луча 1	Float32	R	417,0934	
			0x004A	Скорость звука ф	ильтрованная луча 2	Float32	R	416,9936	E
			0x004C	Скорость звука ф	ильтрованная луча 3	Float32	R	418,6035	
			0x004E	Скорость звука ф	ильтрованная луча 4	Float32	R	0	
			0x0050	Скорость звука ф	ильтрованная луча 5	Float 32	R	0	
			0x0052	Скорость звука ф	ильтрованная луча 6	Float 32	R	0	
			0x0054	Скорость звука ф	ильтрованная луча 7	Float 32	R	0	
	٠ m		•			III			•
Ведомое у	стройство добавлено						Ведомый в	работе Rx Т	x 🚧 COM7

Рисунок 2.7

ВНИМАНИЕ! Изменять значения параметров имеет право только администратор с использованием специального пароля.

При выборе параметра «Общие настройки» (рисунок 2.8) в таблице параметров отображаются основные настройки расходомера.

Связь и на	стройки 🖽	Прибор 🗙	Инстр	ументы	📑 Вид 🕜 Справка			_ K.	9 V
Qст, м ^з /ч	Qp, м³/ч	т, °С	Pa	бс, МПа	Ризб, МПа Vпот, м/с К	од НС	Vст,	∙ ^s Vc	т,обр[м
0,00	0,00	27,31		1,137	1,036 0,008 0x0	0000000	18452	77	19120
🖉 Парам	етры Показани	я прибора За	пись да	нных Трен	ды Архивы Состав газа				
				Общие настро	ики (параметров: 26; исп. адреса 0x100A-0x1038) Название	Тип данных	Доступ	Текущее значение	Ед. изм.
		- 🌾 🛛 🔪		▶ 0x100A	Дата/время прибора	DT_SpiGr	RW	2015.04.29 1	
				0x100E	Расчетный час	UInt16	RW	8	
🥌 🗹 Счи	тывать при выбо	pe 🔄 Onpoc 2	сек	0x100F	Расчетные сутки	UInt16	RW	1	
	20 UFG Visual			0x1010	Сетевой адрес вычислителя	UInt16	RW	1	
	Текущие значен	ия		0x1011	Период опроса ПП	UInt32	RW	100	мс
	Общие настройкі	1		0x1013	Сетевой адрес ПП	UInt16	RW	16	
	настроики віцею Настройки интег	отп офейса и токов		0x1014	Регистр управления	F_UInt32	RW	0x14000111	
	Выход на связь			0x1016	Время активности подсветки	Uint16	RW	300	с
	Настройки диапа	азонов		0x1017	Время активности дисплея	Uint16	RW	65535	с
~				0x1018	Время активности заставки	UInt16	RW	5	с
				0x1019	Минимальная Частота частотного выхода 1	Float32	RW	0	Гц
				0x101B	Максимальная Частота частотного выхода 1	Float32	RW	5000	Гц
				0x101D	Максимальный расход 1	Float 32	RW	77000	
				0x101F	Максимальное значение переменной частот	Float 32	RW	233,7662	
				0x1021	Смещение Частоты частотного выхода 1	Float32	RW	0	
				0x1023	Усиление Частоты частотного выхода 1	Float32	RW	1	
				0x1025	Смещение Переменной частотного выхода 1	Float 32	RW	0	
				0x1027	Усиление Переменной частотного выхода 1	Float 32	RW	1	
				0x1029	Минимальная Частота частотного выхода 2	Float 32	RW	0	Гц
				0x102B	Максимальная Частота частотного выхода 2	Float32	RW	5000	Гц
				0x102D	Минимальное значение переменной частотн	Float32	RW	77000	
				0x102F	Максимальное значение переменной частот	Float32	RW	233,7662	
•	III		P.	•	III				

Рисунок 2.8

ВНИМАНИЕ! Изменять настройки расходомера имеет право только администратор с использованием специального пароля.

При выборе параметра «Настройки Bluetooth» (рисунок 2.9) в таблице параметров отображается имя модуля Bluetooth установленного в ЭБ.

Рисунок 2.9

При выборе параметра «Настройки интерфейса и токового выхода» (рисунок 2.10) в таблице параметров устанавливаются и отображаются основные настройки токового выхода, скорость обмена данными и заводской номер расходомера.

146,03	Qр, м³/ч 13,02	T, °C 27,08	Рабс, МПа 1,137	Ризб, МПа Vпот, м/с Кл 1,035 1,031 0x00	од HC 000000	Vст, 18452	м ^а Vc [.] 277	г,обр[<mark>м</mark> ª 19120
	иетры Показания	прибора Запи	сь данных Трен	ды Архивы Состав газа птерФейса и токового выхода (параметров: 9; исп. а	дреса Ох1050-0	x1060)		
				Название	Тип данных	Доступ	Текущее значение	Ед. изм.
		¥ 🖌	► 0x1050	Скорость обмена по внешнему интерфейсу	E_UInt32	RW	115200 Бит/с	
			0x1052	Значение расхода для тока 4 мА	Float 32	RW	0	M3/4
🔄 🗹 Счі	итывать при выбо	pe 🔲 Onpoc 2 cei	Cx1054	Значение расхода для тока 20 мА	Float 32	RW	77000	M3/A
	-20 UFG Visual		0x1056	Смещение тока токового выхода, мА	Float 32	RW	0	
	Текущие значени	я	0x1058	Усиление тока токового выхода, мА	Float 32	RW	1	
	Общие настройки		0x105A	Смещение переменной токового выхода по р	Float 32	RW	0	
	Настройки Blueto	от Эрикана токового	0x105C	Усиление переменной токового выхода по р	Float 32	RW	1	
	Выход на связь	реиса и токовог	0x105E	Ретранслирование данных для ИСП	E_UInt16	RW	2	
	Настройки диапа	зонов	0x105F	Заводской номер	UInt32	RW	1234567890	
And and a second se								

Рисунок 2.10

Изменение текущего значения выбранного параметра выполняется путем нажатия клавиши «F2» или двойным щелчком левой кнопки манипулятора («мышь») на ячейке таблицы со значением параметра. Правка значения выполняется в ячейке таблицы, за исключением параметра «Скорость обмена по внешнему интерфейсу». Значение данного параметра выбирается из выпадающего списка (рисунок 2.11).

⊋ст, м³/ч 810,72	Qp, м³/ч 71,94	T, °C 25,69	Рабс, МП 1,137	а Ризб, МГ 1,035	la Vnoт,м/с 2,764	К 0x00	од HC 0000000	Vст, 18452	м ^а Vc 277	т,обр[м ^s 19120
Парам	етры Показани	ия прибора Запи	сь данных	Тренды Архивь йки интерфейса и ток Название	ОВОГО ВЫХОДА (ПАРАМЕТРОВ	: 9; исп. а	адреса 0x1050-0	k 1060) Доступ	Текущее	Ед. изм.
	N 🗖		Del	050 Скорость о	мена по внешнему интерф	eŭev	E Ulat 32	RW/	значение	
		•	0x1	052 Значение р	асхола для тока 4 мА	.onoy	Float 32	RW	0	M3/4
🤄 🗵 Счи	тывать при выб	оре 📃 Опрос 2 се	< 0x1	054 Значение р	асхода для тока 20 мА		Float 32	RW	77000	M ³ /4
3P-20 U	FG Visual		Ox1	056 Смещение	гока токового выхода, мА		Float 32	RW	0	
- Теку	щие значения		Ox1	058 Усиление т	ока токового выхода. мА		Float32	RW	1	
合 – Общі	ие настройки	Измен	ение значения				Float 32	RW	0	
-Hact	ройки Bluetooth		-				Float32	RW	1	
Выхо	роики интерфен ид на связь	ACA N TOKOBI 3H	ачение	5200 Бит/с		-	E_UInt16	RW	2	
Haci	ройки диапазон	нов	60	10 БИТ/С 100 БИТ/С			Uint32	RW	1234567890	
			96 19 38 57 12	300 Εμτ/ς 200 Εμτ/ς 1400 Εμτ/ς 600 Εμτ/ς 5200 Εμτ/ς 0400 Εμτ/ς		-	J			
		1-21								

Рисунок 2.11

Для записи выбранного значения необходимо нажать кнопку «Записать» (рисунок 2.12), затем проконтролировать отображение нового значения в ячейке «Текущее значение».

Изменение значения		X
Значение 1152	00 Бит/с	
Отмена	Записать	Записать позже

Рисунок 2.12

При выборе параметра «Выход на связь» (рисунок 2.13) в таблице параметров отображаются основные настройки порта для установки связи, время выхода, количество повторных подключений, а также маска активных тревог.

аст, м•/ч 775,67	<mark>Qp, м^s/ч</mark> 68,66	T, °C Pa6 24,70 1	бс, МПа ,135	Ризб, МПа Vпот, м/с К 1,034 2,643 0x00	од HC 0000000	Vст,⊪ 18452	1 ⁸ Vc1 77	г,обр[<mark>м</mark> ª 19120
Параме	атры Показани:	я прибора Запись дан	ных Тренд Выход на связ	цы Архивы Состав газа ь (параметров: 9; исп. адреса 0x1043-0x104F)		-	Текушее	-
		🔊 🕑 🗌		Название	Тип данных	Доступ	значение	Ед. изм.
2			▶ 0x1043	IP адрес основной	lpV4	RW	84.47.149.240	
📐 🔽 Счит	гывать при выбо	ре 📃 Опрос 2 сек	0x1045	IP порт основной	Uint16	RW	6002	
▶			0x1046	IP адрес резервный	lpV4	RW	84.47.149.240	
3P-20 UF	G Visual		0x1048	IP порт резервный	UInt16	RW	6002	
Л Геку	щие значения		0x1049	Таймаут соединения с сервером	Uint16	RW	2	мин
Наст	ройки Bluetooth		0x104A	Таймаут после первой попытки подключения	Ulnt16	RW	5	МИН
- Наст	ройки интерфей	са и токового выхода	0x104B	Таймаут между попытками подключения (пос	Uint16	RW	20	мин
- Выхо,	д на связь	-	0x104C	Повтор выхода на связь	BP20UDT1	RW	Выход на св	
Наст	ройки диапазоно	рв	0x104E	Маска активных тревог	F_UInt32	RW	0x0	

Рисунок 2.13

При выборе параметра «Настройки диапазонов» (рисунок 2.14) в таблице параметров задаются нижний и верхний пределы измерения. В случае выхода за указанные пределы расходомер будет сигнализировать тревогу.

2ст, м ⁸ /ч 780,04	Qp, м⁰/ч 68,96	T, °C 24,30	Рабс, МПа 1,135	Ризб, МПа Vпот, м/с 1,034 2,655	Код НС 0x00000000	Vст, 18452	4ª Vc1 177	г,обр <mark>[м</mark> ª 19120
Парам	етры Показани	ия прибора Запи	ісь данных Тре Настройки ,	нды Архивы Состав газа импазонов (параметров: 12; исп. адреса 0x1 Название	1800-0x1817)	Лостип	Текущее	Ел изм
			/ N. 0-1000		Elect22	DW	значение	**3/4
			0x1000	Ограничение по минимальному расход	Filoat32	DW	-1500	M74
📄 🗵 Счи	тывать при выбо	оре 📃 Опрос 2 се	к 0x1804	Отрение по расходу	Float 32	RW	1300	M3/u
BP-2011	EG Visual		0x1806	Логоворной расход	Float 32	BW	6.5	M3/4
Теку	/щие значения		0x1808	Договорной расход при Qotc <q<qмин< td=""><td>Float 32</td><td>RW</td><td>1.4</td><td>M3/4</td></q<qмин<>	Float 32	RW	1.4	M3/4
Общ	ие настройки		0x180A	Минимальная температура	Float 32	RW	-50	°C
Haci	гройки Bluetooth	2	0x180C	Максимальная температура	Float 32	RW	70	°C
- Наст	гроики интерфеи	иса и токового вы	хода 0x180E	Договорная температура	Float 32	RW	10	°C
Hac	гройки диапазон	108	0x1810	Минимальное давление	Float 32	RW	0	МΠа
1			0x1812	Максимальное давление	Float 32	RW	1,6	МПа
<u> </u>			0x1814	Договорное давление	Float 32	RW	1,2	МПа
			0x1816	Барометрическое давление	Float 32	RW	0,101325	МПа

Рисунок 2.14

Дерево параметров устройства имеет одно контекстное меню «Параметры устройства», которое предназначено для изменения таймаута связи, количества повторов и некоторых специфичные параметры. Вызов меню «Параметры устройства» осуществляется одинарным щелчком правой кнопкой «мыши» по головному название расходомера (рисунок 2.15).

Рисунок 2.15

Выбор пункта меню «Параметры устройства» активирует экранную форму, представленную на рисунке 2.16.

ВНИМАНИЕ! Изменять значения параметров обмена данными следует только в исключительных случаях.

Параметры устройства (Менять значения только когда очень нужно!)	X
_ Тайминги	
Минимальный интервал времени между пакетами, мс	500 🊖
Минимальное время обработки запроса устройством, мс	5 🚖
Максимальное время ожидания ответа от устройства без учёта задержек в канале связи, мс	5000 🚔
Время ожидания ответа на команды записи данных в устройство, мс	2000 🚔
Если нет ответа: пауза перед повторным запросом, мс	1000 🚔
Повторы	
Сбой в устройстве 1 🗐 Нет ответа	1
Устройство занято 1 📃 Ответ повреждён	1
Преамбула	
厄 Преамбула (hex) 📄 Время действия преамбулы, мс	1
Интервал от преамбулы до отправки запроса, мс	1
Дополнительные настройки Приме	нить

Рисунок 2.16

Для того чтобы сохранить внесенные изменения необходимо нажать кнопку «Применить», в противном случае введенные изменения не будут сохранены.

Таблица параметров имеет контекстное меню (рисунок 2.17), вызов которого осуществляется одинарным щелчком правой кнопкой «мыши» в любом месте таблицы параметров.

Te	кущие значен	ия (параметров: 41; исп. адреса 0x0000-0x0055)					
		Название	Тип данных	Доступ	Текущее значе	ние	Ед. изм.	
	0x0000	Расход стандартный	Float32	R		12,34	M3/4	
	0x0002	Расход рабочий	Float32	R		11,23	M3/4	
	0x0004	Температура Float32 R			23,45	°C		
▶	0x0006	Парлацика абсолютное	Float 32			0,105678	МПа	
	0x0008	Копировать все значения в буфер	Float32	R		0,98	м/с	=
	ОхОООА Вставить значения из буфера		Float32	R		345,67	м/с	
	0x000C	Сохранить таблицу в файл	Float32	R		МПа		
	0x000E	Сохранить таблицу в MS Excel (!)	Float32	R	0,999			
	0x0010	Очистить все	DT_SpiGr	R	2014.12.28 14	:45:16.230		
	0x0014	Все по-умолчанию	UInt32	R	0x	<00000000		
	0x0016	Последние считанные	UInt32	R		0	сек	
	0x0018	Выбланные параметры				0	сек	
	0x001A	иделинич: понер у опт	по-умолч	анию		00000000		
	0x001E	Заводской номер	Исходные	Исходные (из устройства)				
	0x0020	Температура прибора	Очистить			0	°C	
	0x0022	Напряжения питания прибора	Считать			0	мВ	
	0x0024	Рабочий объём	Копироват	ъ значения	в буфер	0	M3	
	0x0026	Стандартный объём	UInt32	R		0	M3	
	0x0028	Рабочий объём реверсивный	UInt32	R		0	M ³	
0x002A		Стандартный объём реверсивный	UInt32	R	0		M ³	-

Рисунок 2.17

Контекстное меню содержит следующие элементы:

1) «Копировать все значения в буфер» предназначен для копирования всех значений в буфер обмена;

2) «Вставить значения из буфера» предназначен для вставки значений из буфера обмена в ячейки значений параметров, начиная с текущего параметра. Если в буфере обмена содержится только одно значение, а выбрано 2 и более параметров, то всем выбранным параметрам будет присвоено это значение;

3) Элемент меню «Сохранить таблицу в файл» предназначен для сохранения содержимого таблицы параметров в текстовый файл. Сохраняется все содержимое таблицы, включая заголовки столбцов. При сохранении можно выбрать следующие параметры:

- кодировку: ANSI или UTF-8;

- символ-разделитель: CSV или TAB.

Предпочтительно выбирать кодировку UTF-8 для корректного отображения символов, но при использовании офисного пакета MS Office 2003 и более ранние выпуски лучше сохранять в ANSI;

4) «Сохранить таблицу в MS Excel(!)» предназначен для сохранения содержимого таблицы параметров в файл MS Excel. Для сохранения необходим MS Excel версии не ниже 2007 с установленным дополнением «Поддержка программирования .NET»;

5) «Очистить все» предназначен для очистки содержимого столбца значений;

6) «Все по-умолчанию» предназначен для задания значений по-умолчанию для всех параметров (из таблицы), имеющих такое свойство;

7) «Последние считанные» предназначен для задания последних считанных значений для всех параметров (из таблицы), доступных для записи. Обычно используется разработчиками устройства и специалистами по проверке для отладки/проверки функций записи параметров и ведения журналов изменений устройством;

8) «Выбранные параметры:

– «По-умолчанию» предназначен для задания значений по-умолчанию для выбранных параметров (из таблицы), имеющих такое свойство;

– «Исходные (из устройства)» предназначен для задания последних считанных значений для выбранных параметров, доступных для записи;

– «Очистить» предназначен для очистки содержимого столбца значений для выбранных параметров;

– «Считать» предназначен для считывания значений выбранных параметров;

– «Копировать значения в буфер» предназначен для копирования значений выбранных параметров в буфер обмена. Значения разделяются символами конца строки, то есть в буфер обмена помещается текст, в котором каждое значение занимает одну строку.

2.6.4 Вкладка «Показания прибора» предназначена для удобного визуального восприятия текущих показаний прибора (мнемосхема, графики, диаграммы и т.п.). Страница специфичная для каждого типа прибора и может отсутствовать (нет реализации под выбранный прибор). Отображается первой после запуска ПО, если есть реализация под выбранный прибор (рисунок 2.18).

Рисунок 2.18

2.6.5 Вкладка «Запись данных» предназначена для периодического чтения показаний расходомера, записи и хранения (в течение заданного времени) считанных значений в память ППК (рисунок 2.19).

Рисунок 2.19

Для того чтобы начать запись данных, необходимо выбрать параметры, значения которых будут регистрироваться, задать период опроса и настроить режим записи данных.

На данной вкладке имеются следующие элементы управления:

Пегенда предназначен для того чтобы скрывать/отображать таблицу параметров;
Автопереход

– **к посл. строке** предназначен для того чтобы в поле данных в конце списка отображалось последний измеренный параметр;

_ Период опроса, сек 5,0 → предназначен для того чтобы устанавливать период опроса параметров в диапазоне от 0,1 до 9,9 сек;

_ Режим регистрации: Каталог предназначен для того чтобы отображать тип контейнера сбора данных, устанавливаемый с помощью «Настроек записи данных»;

Текущее состояние Нажмите 'Пуск' для запуска

предназначен

для того чтобы отображать текущее состояние ПО;

2.6.6 Вкладка «Тренды» предназначена для отображения значений выбранных параметров в виде графиков, наглядного изменения параметров с течением времени (рисунок 2.20).

Рисунок 2.20

На данной вкладке имеются следующие элементы управления:

13.04.2015 15:13:01

– предназначен для установки даты и времени за которые будут отображаться данные на графике;

– Параметры предназначен для того чтобы скрывать/отображать таблицу параметров с настройками;

Окно времени: 6ч. 00м.

– предназначен для установки временного интервала для автоматического режима;

– Павто предназначен для включения/отключения режима автоматического отображения актуальных значений за заданное окно времени;

— *Пегенда* предназначен для того чтобы скрывать/отображать легенду в поле графика (соответствие линий и названий параметра).

Примечание – Элемент управления «Дата/время» и ползунок блокируются при работе в режиме «Авто».

Таблица параметров предназначена для индивидуальной настройки отображаемых на графике данных, для этого необходимо выбрать наблюдаемый параметр и зайти в его настройки нажатием кнопки «Настр.». Выбор данного пункта активирует экранную форму (рисунок 2.21).

<u>Настр</u>	ойки тренда								
Цвет									
Вид	Ступенчатый 🗸								
Толщина	V 2 ^								
Стиль линии	Solid -								
Ось ордина	т								
Левая	Правая								
Закрыть									

Рисунок 2.21

На данной ЭФ можно изменить цвет, вид (ступенчатый, линейный, сплайн, точки), толщину и стиль линии, а также выбрать ось ординат (левая или правая). После чего нажать кнопку «Закрыть».

Запуск, остановка процесса рисования графиков и удаление собранных данных управляется кнопками с соответствующими рисунками.

Настройка временного интервала, за который отображаются данные, осуществляется в окне «Диапазон времени» (рисунок 2.22), которое вызывается нажатием на кнопку «Окно времени:». Текущий диапазон указан в названии кнопки. После выбора необходимого диапазона нажать кнопку «Закрыть».

2 минуты	2 часа
5 минут	6 часов
10 минут	12 часов
30 минут	24 часа
1 час	48 часов
Пользов.	10 🔅 мин

Рисунок 2.22

Программа поддерживает рисование графиков на двух осях ординат с автоматическим вычислением масштаба, что позволяет наблюдать за динамикой как минимум двух параметров, сильно отличающихся по значениям.

Программа поддерживает возможность изменить тип и стиль линий для всех графиков, используя контекстное меню, представленное на рисунках 2.23, 2.24, вызов которого осуществляется одинарным щелчком правой кнопкой «мыши» в любом месте поля с графиками.

Также с помощью данного контекстного меню имеется возможность сохранить график в файл в виде изображения или набора точек данных.

Рисунок 2.23

, м ^а . ,00	/ч Qp, м²/ч 0,00	2	r, °C 7,02	Рабс, МПа 1,137	Ризб, МПа 1,036	Vпот, м/с 0,004	Код НС 0x00000000	Vст,м ⁸ 1845277	Vст,обр[м 19120
Г	Параметры Показ	зания приб	ора Запи	сь данных Тре	нды Архивы Сс	став газа			
	Переменные Кур	осоры		10	00	1			30
	Параметр	вкл	Вид	8	00				
	Qст, м ^s /ч	V	Настр.		00			$\neg M$	-25
	Qp, м ^s /ч		Настр.	5	00				
	T, °C		Настр.	4	00	Сохран	ить в фаил		20
	Рабс, МПа		Настр.	Dach	~	Стиль	нии		
	VIIDT M/C	(m)	Настр	Dash)ot				-15 d
6				Dash	otDot				10
	Ризо, МПа		настр.	Dot		Y			10
			Настр.	Solid					-5
		A		-6	00				-
				-8	00			10.00.00 10.0	
	Период обновл	ения, сек	5,00		02:00:00	04:00:00 06:00	J:00 08:00:00	10:00:00 12:0	00:00
	25.04.2015 11:43:23		Тараметры	Окно вр	емени: 12ч. 00м.	🔽 Авто	🔲 Легенда		
				L					

Рисунок 2.24

2.6.7 Вкладка «Архивы» предназначена для чтения архивных данных из прибора за произвольный интервал времени (рисунок 2.25). Если прибор не ведет архивы — страница отсутствует.

ст, м 0,00	• ⁸ /ч Qp, м ⁸ /ч 0 0,00 :	Т, °С Рабс, МПа Ризб, МПа Vпот, м/с 26,46 1,136 1,035 0,007	Код HC 0x00000000	Vст,м ^а 1845277	Vст,обр[м [®]] 19120
2	Параметры Показания при	бора Записьданных Тренды Архивы Состав газа			
	-		01.04.2015 0:00:00 👻		
	Тип архива	Дата/время записи		1	
•	Даппріє за месяц.	Объем рабочий, м ³			
	Канал Канал 1 у	Объем стандартный, м ³			
	Transit i	Объем восстановленный рабочий, м ³	-		
-	Начало интервала	Объем восстановленный стандартный, м ^а			
2	Апрель 2015 🔍 💌	Объем суммарный рабочий, м ³			
	e #	Объем суммарный стандартный, м ³			
	Конецинтервала	Объем рабочий реверсивный, м ³	-	1	
	Апрель 2015	Объем стандартный реверсивный, м ³			
	Кол-во записей 1 - 1	Объем восстановленный рабочий реверсивный, м ³			
1		Объем восстановленный стандартный реверсивный, м ³		-	
	Считать	Объем суммарный рабочий реверсивный, м ³			
		Объем суммарный стандартный реверсивный, м ³			
	Отмена	Коэффициент сжимаемости			
	Grimena	Давление, МПа			
		Температура, "С			
		Коэффициент перевода			
		Код НС	-		
		Количество точек		-	
		Время НС (Общий бит НС от ПП), мин			
		Время НС (Нет питания), мин			
		Время НС (Нет связи), мин		-	
		Время HC (Q > Qmax или Qotc <= Q <= Qmin), мин			
		Влемя HC (T > Tmax или T < Tmin) мин			

Рисунок 2.25

На данной вкладке имеются следующие элементы управления:

– <u>Данные за месяц</u> – предназначен для того чтобы сформировать отчет за определенный период времени, представляет собой выпадающий список;

_	Канал	Канал 1	-	– прелна	азначен для то	го чтобы	і выбирать к	анал для	я опроса	ланных:
	Начало ин	нтервала		I .//			- F		- F	
_	Апрель	2015	💷 – пре	елназнач	ен для того ч	гобы зал	авать начал	о интер	вала вре	емени лля
формирс	вания (отчета;	г					r		- / /
	🔘 Конец	цинтервала								
_	Апрель	2015	💵 – пр	едназнач	иен для того ч	тобы зад	цавать оконч	чание и	нтервала	а времени
для форм	лирован	ния отчет	a;							
_	🖲 Кол-в	о записей	1	🗏 – пре	дназначен дл	ия того	чтобы задаі	вать ко.	личество	э записей
измеряем	иого па	раметра д	іля формир	рования (отчета;					
		Считат	ь							
- (🛛 – пред	назначен для	того чт	обы начать	считыв	ание да	нных для
формирс	вания с	отчета по	заданным	парамет	рам;					
_		Отмена		_ предн	назначен для	гого чтоб	бы отменить	ь считыі	зание да	ННЫХ.
По.	ле с	данными	архива	имеет	контекстное	меню	(рисунок	2.26),	вызов	которого
осущести	вляется	одинарн	ым щелчко	ом право	й кнопкой «м	ыши» в .	любом мест	е табли	цы параг	метров.

.т,м°/ч Qp,м°/ч 0,00 0,00	T, ⁰C 26,74	Рабс, МПа 1,138	Ризб, МПа 1,036	Vпот, м/с 0,000	Код НС 0x00000000	Vст,м ^а 1845277	Vст,обр[м³] 19120
Лараметры Показани	ія прибора 3	апись данных Тре	нды Архивы Со	став газа			
Тип апуива					01.04.2015 0:00:00 👻		
Данные за месяц		ата/время записи			-	0	
		бъем рабочий, м ³					
Канал Канал 1	- 0	бъем стандартный, м ³			((i		
	0	бъем восстановленный р	забочий, м ³				
Начало интервала	0	бъем восстановленный с	тандартный, м ³		Сохранить в файл		
Апрель 2015 🔍 🔻	0	бъем суммарный рабочи	й, M ³		Сохранить в MS Excel (!)	<u></u>	
	0	бъем суммарный станда;	ртный, м ^з				
Конец интервала	0	бъем рабочий реверсивн	ый, M ³		2		
Апрель 2015	0	бъем стандартный ревер	сивный, м ³				
Кол-во записей	10	бъем восстановленный р	забочий реверсивный, м	13			
	- 0	бъем восстановленный с	тандартный <mark>реверсивн</mark>				
Считать	0	бъем суммарный рабочи	й реверсивный, м ³				
	0	бъем суммарный станда	ртный реверсивный, м ³				
Omagun	К	оэффициент <mark>сжи</mark> маемост	пи				
Ulimona		авление, МПа					
	T	емпература, °С			-		
	ĸ	оэффициент перевода					
	ĸ	од НС					
	ĸ	оличество точек			6		
	B	ремя НС (<mark>Общий бит</mark> НС с	эт ПП), мин				
	В	ремя НС (Нет питания), м	ин				
	B	ремя НС (Нет связи), мин	•				
	B	ремя НС (Q > Qmax или Q	otc <mark><= Q <=</mark> Qmin), мин		6		
	B	ремя НС (T > Tmax или T	< Tmin), мин				

Рисунок 2.26

Контекстное меню имеет следующие элементы управления:

1) «Сохранить таблицу в файл» предназначен для сохранения содержимого таблицы параметров в текстовый файл. Сохраняется все содержимое таблицы, включая заголовки столбцов. При сохранении можно выбрать следующие параметры:

- кодировку: ANSI или UTF-8;
- символ-разделитель: CSV или TAB.

Предпочтительно выбирать кодировку UTF-8 для корректного отображения символов, но при использовании офисного пакета MS Office 2003 и более ранние выпуски лучше сохранять в ANSI.

2) «Сохранить таблицу в MS Excel(!)» предназначен для сохранения содержимого таблицы параметров в файл MS Excel. Для сохранения необходим MS Excel версии не ниже 2007 с установленным дополнением «Поддержка программирования .NET».

2.6.8 Вкладка «Состав газа» предназначена для просмотра и изменения состава газа и метода расчёта коэффициента сжимаемости в приборе (рисунок 2.27). Если прибор не использует данную возможность (например, прибор не работает с природным газом) — страница отсутствует.

, m^a 1,98	/ч Qp, 8 -2	м³/ч Т, °С ,81 19,76	Рабс, М 1,123	Па Ри	зб, <mark>МП</mark> а 1,022	Vпот, м/с -0,090	Код HC 0x00000000	Vст,м [®] 1846208	Vст,обр[м ^а 19130
Γ	Тараметры	Токазания прибора	Запись данных	Тренды	Архивы	остав газа			
	Компонент		Значение	Ед.изм.	Метод р	асчёта			
1	Азот		0,0400	%	вница	MB	-		
1	Диоксид угле	рода	4,3000	%					
1	Метан		85,0000	%					
1	Этан		5,6000	%	Счи	тать	Записать		
1	Пропан		2,0000	%			L		
ŀ	н-Бутан		0,0000	%					
1	Изобутан		0,0100	%					
F	н-Пентан		0,0000	%	Суми	1a, %	100.0000		
I	Изопентан		0,0000	%					
F	н-Гексан		0,0000	%					
F	н-Гептан		0,0000	%					
F	н-Октан		0,0000	%					
ł	н-Нонан		0,0000	%					
ł	н-Декан		0,0000	%					
E	Водород		0,0000	%					
ł	Кислород		0,0000	%					
1	Монооксид уг.	лерода	0,0000	%					
E	Вода		0,0000	%					
(Сероводород		3,0500	%					
ſ	Гелий		0,0000	%					
1	Аргон		0,0000	%					
ł	Компонент 22	2	0,0000	%					
ł	Компонент 23	}	0,0000	%					
ł	Компонент 24		0 0000	%	*				

Рисунок 2.27

На данной вкладке имеются следующие элементы управления:

Метод расчёта	
вницсмв	
Заданное значение Ксж	
GERGISTINOU	

предназначен для того чтобы просматривать и изменять

_ ВНИЦ СМВ метода расчёта и представляет собой выпадающий список. При смене выбора в списке происходит автоматическое чтение из устройства состава газа для нового метода расчёта;

Считать

предназначен для того чтобы запрашивать текущие значения состава газа и метода расчёта;

Записать

предназначен для того чтобы записывать в устройство новые значения состава газа и метода расчёта;

Сумма, %

100.0000

предназначен для того чтобы контролировать суммы

молярных долей компонент полного состава газа, сумма должна быть равной 100 %. При выборе метода расчета с неполным компонентным составом элементы управления не отображаются. Поле названий и значений компонентного состава газа имеет контекстное меню (рисунок 2.28), вызов которого осуществляется одинарным щелчком правой кнопкой «мыши» в любом месте таблицы параметров.

язь и настро	йки 🚺 Прибор	Х Инструмен	ты 🗾 В	ид [Справка			
м ^е /ч Q	р, м ⁸ /ч T, °C 0,00 24,80	Рабс, М 1,116	Па Риз 1	юб, МПа Vпот, и ,014 0,002	и/с Код НС 2 0x00000000	Vст,м³ 1846208	Vст,обр[м 19130
Параметры	Показания прибора	Запись данных	Тренды А	рхивы Состав газа			
Компонент	r.	Значение	Ед.изм.	Метод расчёта			
Азот		0,0400	%	ВНИЦСМВ	•		
Диоксид уг	лерода	4,3000	%				
Метан		Сохранить в файл					
Этан		Сохранить в MS Exce	1(1)	Считать	Записать		
Пропан		2,0000	%				
н-Бутан		0,0000	%				
Изобутан		0,0100	%				
н-Пентан		0,0000	%	Сумма, %	100.0000		
Изопентан		0,0000	%				
н-Гексан		0,0000	%				
н-Гептан		0,0000	%				
н-Октан		0,0000	%				
н-Нонан		0,0000	%				
н-Декан		0,0000	%				
Водород		0,0000	%				
Кислород		0,0000	%				
Монооксид	углерода	0,0000	%				
Вода		0,0000	%				
Сероводоро	рд	3,0500	%				
Гелий		0,0000	%				
Аргон		0,0000	%				
Компонент	22	0,0000	%				
Компонент	23	0,0000	%				
Компонент	24	0.0000	%	r.			

Рисунок 2.28

Контекстное меню имеет следующие элементы управления:

1) «Сохранить таблицу в файл» предназначен для сохранения содержимого таблицы параметров в текстовый файл. Сохраняется все содержимое таблицы, включая заголовки столбцов. При сохранении можно выбрать следующие параметры:

- кодировку: ANSI или UTF-8;

- символ-разделитель: CSV или TAB.

Предпочтительно выбирать кодировку UTF-8 для корректного отображения символов, но при использовании офисного пакета MS Office 2003 и более ранние выпуски лучше сохранять в ANSI.

2) «Сохранить таблицу в MS Excel(!)» предназначен для сохранения содержимого таблицы параметров в файл MS Excel. Для сохранения необходим MS Excel версии не ниже 2007 с установленным дополнением «Поддержка программирования .NET».

2.6.9 Вкладка «Формирование отчетов» предназначена для сбора данных с устройства, формирования и печати отчётов о работе устройства

Экранная форма «Формирование отчетов» вызывается через меню «Прибор».

Основное использование:

– ежемесячное формирование набора отчетов (настройки прибора, посуточный архив и архив событий) за выбранный месяц;

 – формирование отчета за сутки (почасовые записи) для детального анализа работы прибора за выбранный день.

На рисунке 2.29 представлен внешний вид формы «Формирование отчетов» для случая посуточного отчета за месяц.

Посуточный отчет за месяц содержит данные о накопленных объемах, средних значениях основных параметров, коды и продолжительности нештатных ситуаций (аварий) за интервал времени 1 сутки.

Формирование отчётов									
Прибор	UFG		Зав. №	1234567	390 Версия П	D 2.30 Bepc	хия МПО 1.0		
Дата/время (прибор)	2015.04.06 08:3	2:39 Дата	а/время (ЭВМ)	2015.04.06 0	8:35:00 Разница »	кода часов -	0 д. 00:02:21	Продолж. НС 0 д	. 00:23:00
Объём рабочий	17 047,59	3 06	Объём рабочий восстан.		29,820	Объём рабочий с	суммарный	408 094,000	
Объём станд.	205 010,82	1 06	бъём станд, восста	н.	336,027	Объём станд. су	ммарный	1 651 839,00	0
Объём рабочий, обр.	283,824	06	бъём рабочий восс	тан., обр.	0,000	Объём рабочий с	суммарный, обр.	1 286,000	
Объём станд., обр. 3 432,084		06	бъём станд, восста	н., обр.	0,000	Объём станд. су	ммарный, обр.	16 044,000	
Параметры отчёта		День	Vp, м ³	Vст, м ³	Vpв, м ³	Vств, м ³	Vp.обр, м ³	Vст.обр, м ³	Vрв.
Посуточный отчёт за	месяц 🔻	1	444,726	5 391,786	0.000	0.000	8.275	100,795	0.
Дата 03.2015		2	611,900	7 409,545	0,000	0,000	9,677	117,575	0,
		3	611,495	7 451,812	0,000	0,000	7,337	89,612	0.
		4	619,805	7 502,300	0,000	0,000	10,223	124,219	0,1 🗮
		5	606,613	7 323,408	0,000	0,000	10,734	130,301	0,0
		6	610,045	7 407,208	0,000	0,000	6,602	81,450	0.
Chonser		7	425,464	5 141,355	0.000	0,000	8,148	98,403	0.
Сформиров		8	253,582	3 075,952	0.000	0,000	7,132	86,683	0.
0794942		9	446,458	5 319,145	0,000	0,000	7,970	95,374	0,
Cilliona		10	607,867	7 197,306	0.000	0.000	8,502	101,364	0,
Печать отчёта		11	578,346	6 947,269	0,000	0,000	9,542	114,752	0,
doPDF 8	-	12	542,691	6 540,536	0.000	0.000	10,596	128,034	0,
Печать		13	622,885	7 446,636	0,000	0,000	7,278	87,341	0.
		14	412,891	4 909,554	0,000	0,000	8,161	97,276	0.
		15	383,262	4 583,159	0,000	0,000	8,900	106,673	0,
		16	648,623	7 760,320	0.000	0,000	7,812	93,381	0,
		<u>ا</u> ج	005 477	7 010 500	1 0.000	0.000	0.010	1 100.000	Ê.

Рисунок 2.29

На форме имеются элементы управления:

- выпадающий список для выбора вида отчёта;
- дата или месяц, за которую(-ый) формируется отчет;
- выпадающий список для выбора принтера;
- кнопки «Сформировать», «Отмена», «Печать»;
- контролы для отображения информации (таблица и пр.).

Доступно 4 вида отчетов (рисунок 2.30):

- почасовой отчёт за сутки;
- посуточный отчет за месяц;
- архив событий (за месяц);
- настройки прибора.

Формирование отчётов			_			-		×
Прибор UFG		Зав. №	60020	Версия ПС)	1.6.0.0	Расчётный час	8
Дата/время по прибору 2014.12.17 10):29:18	Дата/время (ЭВМ)	2014.12.17 09:2	Э:06 Разница хо	да часов	0 д. 01:00:11	Продолж. НС 0	д. 00:00:00
]		
Объём 1 199,9	7	Объём восстан.		0,00	Объём суммар	ный	649 45	9,18
Параметры отчёта	Vac	V M3	VEOCCT M ³	Тенито °С	Тененин °С	Павление МПа	Скорость	Kon HC ^
Почасовой отчёт за сутки 🗢	0	50.00	0.00	10.00	10.00	0.200	1 700	0.0000
Почасовой отчёт за сутки	ů O	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
Настройки прибора	10	50,00	0,00	10,00	10,00	0,300	1,760	0x0000
	10	50,00	0,00	10,00	10,00	0,300	1,760	0x0000
	10	50.00	0,00	10,00	10,00	0,300	1,768	0x0000
	12	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
	13	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
Сформировать	14	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
	15	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
Отмена	16	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
	17	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
Печать отчёта	18	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
FS-1035MFP -	19	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
Davage	20	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
I IE4d ID	21	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
	22	50,00	0.00	10,00	10,00	0,300	1,768	0x0000
	23	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
	0	50,00	0.00	10,00	10,00	0,300	1,768	0x0000
	1	50,00	0,00	10,00	10,00	0,300	1,768	0x0000
	2	50,00	0.00	10.00	10,00	0,300	1,768	0x0000
	२ ∢	50.00	0.00	10.00	10.00	0.300	1 768	0000v0

Рисунок 2.30

Почасовой отчет за сутки содержит данные о накопленных объемах, средних значениях основных параметров, коды и продолжительности нештатных ситуаций (аварий) за интервал времени 1 час. Пример отчета за сутки приведен на рисунке 2.31.

В архив вошли следующие основные параметры:

- объем рабочий Vp, м³;
- объем стандартный Vст, м³;
- объем рабочий восстановленный Vpв, м³;
- объем стандартный восстановленный Vств, м³;
- объем рабочий обратный (реверсивный) Vp.обр, м³;
- объем стандартный обратный Vст.обр, м³;
- объем рабочий восстановленный обратный Vpв.обр;
- объем стандартный восстановленный обратный Vств.обр, м³;
- разностный объем ∆Vст=Vст-Vст.обр, м³;
- средняя температура газа Т, °С;
- среднее давление газа Р, МПа;
- код внештатной ситуации Код НС;
- время нештатной ситуации Время НС, сек.

Маска кодов внештатных ситуаций приведена в приложении Л.

Формирование отчёто	в								[? 🗙
Прибор	UFG		Зав. №	12345	67890	Версия П	D 2.30 Be	рсия МПО 1.0	Расчётный час	8
Дата/время (прибор)	2015.04.08 13:18	8:52 Да	та/время (ЭВМ)	2015.04.0	8 13:21:05	Разница	кода часов	- 0 д. 00:02:13	Продолж. НС 0 д	. 00:19:56
Объём рабочий	653,674		Объём рабочий восстан.			21,632 Объё		й суммарный	403 359,000	
Объём станд.	8 008,594		Объём станд, восста	н. [273,	671	Объём станд.	суммарный	1 595 169,00	0
Объём рабочий, обр.	11,015	(Объём рабочий восс	тан., обр.	0,0	00	Объём рабочи	й суммарный, обр.	1 207,000	
Объём станд., обр.	135,519		Объём станд, восста	ан., обр. 🛛	0,0	00	Объём станд.	суммарный, обр.	15 099,000	
Параметры отчёта		Час	Vp. м ³	Vст.	M ³	Vрв, м ³	Vств, м ³	Vp.обр, м ³	Vст.обр, м ³	Vрв.
Почасовой отчёт за с	утки 🔻	8	43,288	533,96	64	0,000	0,000	0,188	2,400	0,
Дата 23.03.2015		9	39,417	480,75	57	0,000	0,000	0,745	9,132	0.
		10	51,686	639,53	34	21,632	273,671	0,704	8,613	0,
		11	40,715	496,95	52	0,000	0,000	0,710	8,697	0,
		12	17,242	209,96	68	0,000	0.000	0,763	9,328	0.1 🚃
		13	41,094	499,28	3	0,000	0,000	0,019	0,230	0,
Chamaran		14	24,824	301,21	8	0,000	0,000	0,696	8,481	0.
Сформиров	Daib	15	45,531	555,00)3	0,000	0.000	0,724	8,845	0,
07240112		16	70,057	851,51	6	0,000	0,000	0,000	0,000	0.
Olimena		17	8,884	107,74	17	0,000	0.000	0,681	8,275	0.
Печать отчёта		18	40,498	491,61	9	0,000	0.000	0,732	8,913	0,
Выберите принтер	-	19	31,146	377,61	0	0,000	0,000	0,695	8,468	0,
Пецать		20	34,986	429,93	34	0,000	0.000	0,729	8,994	0,
Tic4a is		21	9,763	123,00	64	0,000	0,000	0,019	0,253	0,
		22	12,430	155,94	1	0,000	0,000	0,683	8,598	0,
		23	0,503	6,39		0,000	0,000	0,000	0,000	0,
		۲ Î	0.550			0.000	0.000	L 0.000	0.000	

Рисунок 2.31

Архив событий (за месяц) содержит сведения об изменениях состояния (включение питания, изменение направления потока, обновление ПО) и настроек прибора. Архив позволяет проконтролировать непрерывность работы устройства и изменения в его настройках. Пример архива событий показан на рисунке 2.32.

Формирование отчёто	3					
Прибор	UFG	3ar	в. № 123456789	Версия ПО 2.30	Версия МПО 1.0	
Дата/время (прибор)	2015.04.06 08:31:36	Дата/время	(ЭВМ) 2015.04.06 08	33:57 Разница хода часов	- 0 д. 00:02:21 Про	одолж. НС
Параметры отчёта		Номер	Дата/время	Тип события	Параметр	Значение
Архив событий (за м	эсяц) 👻	1	2015.03.23 10:59:00	Включение питания	Включение питания	23.03.2015 10:39:33
D 02 2015		2	2015.03.25 08:46:00	Изменение настроек	Дог. расход	6,5
Дата 03.2013		3	2015.03.30 09:51:00	Изменение настроек	Мин. расход	-1500
		4	2015.03.30 09:51:00	Изменение настроек	Макс. расход	1500
		5	2015.03.31 08:07:00	Изменение настроек	Порог отсечки по расходу	1
		6	2015.03.31 08:07:00	Изменение настроек	Порог отсечки по расходу	1
		7	2015.04.01 00:00:00	Служебное событие		
Отмена Печать отчёта doPDF 8 Печать						

Рисунок 2.32

Отчет «Настройки прибора» содержит сведения о текущих настройках прибора. Это позволяет визуально контролировать значения текущих настроек. Пример отчета по настройкам прибора показан на рисунке 2.33.

Формирование о	тчётов						? 🔀
Прибор	UFG		Зав. №	1234567890	Версия ПО 2	30 Версия МПО 1.0	
Дата/время (приб	5op) 2015.04.08 13	:35:49 Дата	/время (ЭВМ)	2015.04.08 13:38:02	Разница хода час	сов - 0 д. 00:02:13	Продолж. НС
Параметры отчё	ёта			Параметр		Значение	Едизм. 4
Настройки приб	iona 👻	Дата/время	прибора	<u> </u>		2015.04.08 13:35:50	.000
- ide iperior ipric		Расчетный ч	ac			8	
		Расчетные с	сутки			1	
		Сетевой адр	ес вычислител:	R		1	
		Период опро	оса ПП			100	MC E
		Сетевой адр	ес ПП			16	
		Регистр упр	авления			0x14000111	
Сформировать		Время акти	вности подсвет	¢И		300	с
	·	Время акти	вности дисплея			65535	c
Отмена		Время акти	вности заставки	4	5	с	
		Минимальна	ая Частота част	отного выхода 1		0	Гц
Печать отчета		Максималы	ная Частота час	тотного выхода 1		5000	Гц
Выберите принт	тер т	Максималы	ный расход 1			77000	
п	Іечать	Максималы	ное значение пе	ременной частотного выход	a 1	233,7662	
		Смещение ч	астоты частотн	юго выхода 1		0	
		Усиление Ч	астоты частотн	ого выхода 1		1	
		Смещение Г	Теременной час	тотного выхода 1		0	
		Усиление П	еременной част	готного выхода 1		1	
		Минимальна	ая Частота част	отного выхода 2		0	Гц
		Максималы	ная Частота час	тотного выхода 2		5000	Гц
		Минимально	ре значение пер	еменной частотного выхода	2	77000	
		Максималы	ное значение пе	ременной частотного выход	ua 2	233,7662	
		Смещение ч	астоты частотн	юго выхода 2		0	2
		Усиление Ч	астоты частотн	ого выхода 2		1	

Рисунок 2.33

2.7 Измерение реверсивных расходов

В расходомере-счетчике газа Turbo Flow UFG реализована возможность измерения как прямых, так и обратных (реверсивных) расходов с одинаково высокими метрологическими характеристиками.

Необходимость измерения реверсивного расхода оговаривается при заказе расходомера. При этом завод-изготовитель проводит дополнительные работы по калибровке расходомера в реверсивном направлении.

Работа с реверсивным расходомером не отличается от работы с нереверсивным расходомером.

При измерении реверсивного расхода показания расходомера по расходу и скорости потока будут отрицательными. При этом накопленный реверсивный объем газа будет фиксироваться в ячейках архива для реверсивного расхода.

Информация о накопленных объемах газа, прошедших через расходомер в прямом и обратном направлениях, сохраняется в отдельных ячейках архива, соответственно для прямого и реверсивного расходов.

Изменение направления потока с прямого на обратный и наоборот фиксируется в архиве событий с указанием даты, времени и направления потока.

При формировании суточных и месячных отчетов по архиву учтенных объемов газа дополнительно вычисляется т.н. разностный объем, как разность прямого и обратного объемов газа за отчетный период.

Восстановление объема газа в архиве за интервал времени, когда отсутствовало питание расходомера, осуществляется по договорному расходу. При этом, если договорной расход положительный, то восстановлению подлежит архив прямого расхода, если отрицательный – то реверсивный.

2.8 Дублирование вычислительных устройств и средств измерений параметров потока

2.8.1 Виды исполнений расходомеров с дублированием.

2.8.1.1 Предусматриваются два исполнения УЗР:

– расходомер с дублированием вычислительных средств и дублирующим набором средств измерений (СИ) приведения расхода к стандартным условиям («исполнение № 1» – частичное дублирование);

– расходомер с дублированием вычислительных средств и средств измерения параметров потока: расхода, температуры и давления («исполнение № 2» – полное дублирование).

2.8.2 Исполнение № 1 – частичное дублирование.

2.8.2.1 Исполнение представляет собой ультразвуковой расходомер на базе UFG-F, оборудованный двумя вычислителями расхода газа и дублирующим набором СИ, необходимых для приведения расхода к стандартным условиям (датчики давления и температуры).

2.8.2.2 Оба вычислителя получают информацию о расходе газа в рабочих условиях от одного первичного преобразователя.

2.8.2.3 Каждый из вычислителей проводит приведение расхода газа к стандартным условиям самостоятельно.

2.8.2.4 Вычислители получают информацию о параметрах потока газа, необходимых для приведения расхода газа к стандартным условиям от разных комплектов СИ параметров потока газа (давление, температура).

2.8.2.5 Метрологические параметры расходомера в Исполнении № 1 полностью аналогичны параметрам серийного расходомера UFG-F;

2.8.2.6 Архивы измерений, настройки, доступные интерфейсы для опроса вычислителя и иные характеристики полностью идентичны таковым характеристикам серийного УЗР UFG-F.

2.8.3 Исполнение № 2 – полное дублирование.

2.8.3.1 Исполнение представляет собой ультразвуковой расходомер на базе UFG-F, оборудованный двумя вычислителями расхода газа и двумя первичными преобразователями потока (т.е. схема «два в одном» - напр. из 8 лучей четыре работают на первый вычислитель, остальные четыре луча – на второй).

2.8.3.2 Каждый вычислитель получает информацию о расходе газа в рабочих условиях от «своего» первичного преобразователя.

2.8.3.3 Каждый из вычислителей проводит приведение расхода газа к стандартным условиям самостоятельно.

2.8.3.4 Вычислители получают информацию о параметрах потока газа, необходимых для приведения расхода газа к стандартным условиям от разных комплектов СИ параметров потока газа.

2.8.3.5 Метрологические параметры расходомера в Исполнении № 2 полностью аналогичны параметрам серийного расходомера UFG-F.

2.8.3.6 Архивы измерений, настройки, доступные интерфейсы для опроса вычислителя и иные характеристики полностью идентичны таковым характеристикам серийного УЗР UFG-F.

2.8.4 Переключение между исполнениями № 1 и № 2 осуществляется программно. Для обслуживания исполнений № 1 и № 2 используется единое ПО (АРМ для UFG с дублированием «DualHead UFG Viewer»).

2.8.5 Единое программное обеспечение для расходомеров с дублированием реализует следующий функционал:

- одновременный опрос двух вычислительных блоков расходомера;

- анализ и сличение данных, поступающих от вычислительных блоков;

– подстройка часов РСГ.

2.8.5.1 ПО содержит следующие разделы (вкладки):

- сравнительный анализ;
- параметры;
- диагностика;
- состав газа;
- РСГ № 1:
 - Показания прибора;
 - Тренды;
 - Регистрация данных;
 - Архивные данные;
- РСГ № 2:
 - Показания прибора;
 - Тренды;
 - Регистрация данных;
 - Архивные данные.

2.8.5.2 Раздел «Сравнительный анализ» предназначен для анализа и сличения данных, поступающих с вычислителей № 1 и № 2 (рисунок 2.34).

	l					
Гекущие данные						
Параметр	Ед.изм.	B. №1	B. №2	Ср. знач.	Δ;(δ,%)	δmax,%
Мгновенный расход Qcт	ст.м ³ /ч	0	0	0	0	2,00
Мгновенный расход Qраб	раб.м³⁄ч	0	0	0	Ö	3,00
Скорость потока V	M/C	0,01	0,01	0,01	0,00 (0,00%)	3,00
Текущее давление Р	<mark>М</mark> Па	0,101	0,101	0,101	0,000 (0,00%)	1,00
Текущая температура Т	°C	23,16	-1,48	10,84	24,64	1,00
Дата/время (РСГ)		2016.01.14 14.48:39	2016.01.14 14:48:35		1 сек	
Архив за предыдущий час (13-14ч.	14.01.2016)		2			
Параметр	Едизм	B. №1	B. №2	Ср. знач.	δ,%	δmax,%
Объём в станд, условиях	CT M ²	37,586	42,684	40,135	12,71	3,00
Объем в рабочих условиях	раб.мª	38,144	39,591	38,868	3,73	3,00
Длительность HC	сек	0	0			
Среднее давление	МПа	0,1	0,101	0,1005	1,00%	2,00
Средняя температура	°C	22,8	-1,46	10,67	+	2.00

2.8.5.3 Раздел «Параметры» предназначен для просмотра и изменения значений параметров расходомеров-счетчиков № 1 и № 2. Параметры сгруппированы в древовидную структуру.

2.8.5.4 Раздел «Диагностика» предназначен для вывода диагностической информации от расходомеров-счетчиков в виде диаграмм, таблиц и индикаторов.

2.8.5.5 Раздел «Состав газа» предназначен для чтения и изменения в обоих РСГ используемого метода расчета и его свойств (состав газа).

2.8.5.6 Разделы «РСГ № 1» и «РСГ № 2» предназначены для работы с выбранным расходомером. Раздел реализует часть функционала ПО «ХС Viewer»:

- показания прибора (рисунок 2.35);

- тренды (рисунок 2.36);

- регистрация данных (рисунок 2.37);

– архивные данные (рисунок 2.38).

Рисунок 2.35

ualHead UFG View	er (1.0.3): Auros	ход	-	and the second		and the second se	and the second	And a second	
авнительны	ый анализ	Парамет	ры Диагностик	а Состав газа РСГ	Nº1 PCF №2				
Показания	прибора		Тренды	Регистрация данных	Архи	ІВНЫЄ ДАННЫЄ			
еременные Ку	урсоры		25-	1	1	T.	1		
Параметр	вкл	Вид ^							
аст, м⁰/ч	E1	Настр.	20						
'ae, m/c		Настр.							
/пот, м/с	<u>11</u>	Настр.	15						
/ст,м ^а		Настр.	P						
/ст,обр[мº]	13	Ностр.	10-						
Г, °С	10	Настр.							
		•	5						
	U		0						
Период обновл	ения, сек	1,00	-	14:47:40	14:48:00	14.48.20	14:48:40	14:49:00	14:49:20
01.2016 14:47:22		араметры	Окно времени: О	ч. 02м. 🖳 Авто 📺	Легенда				
									Danaguur
						BIA		ACOM9 IX KX	дополнит.
е 💵	Temp		Карта Ростова-на-Д	Skype" - kuzen_	Microsoft Excel (Cf	bo DualHead UFGV	еме Документ1 - М	Aicros RU A	· 🖓 🕼 14

Сравнительный анализ	Параметрь	Диагностика	Состав газа	PCF №1	PCF №2							
Показания прибора	Тр	өнды	Регистрация	данных	Архи	вные данные						
Параметр	вкл	V Легенда V Авт	гопереход	MOLIONDCS. (ек 2.0							
М, кг	四	K II	ben e ipoke					V				
М,обр[кг]	E	Настройка записи д	анных Режим	регистрации:	Тоблицо							
Ραδς, ΜΠα		Текущее состояние	Выполнено 2,4%.	До завершен	ия осталось ОО:	09:45	ИДЕТ ЗАП	ИСЬ				
Ризб МПа		2016.01.14 16:30:54 34	1, °C 23,50	Gp. M ⁴ /4								
1 100, 11110		2016.01 14 16:30 56 34	23,50									
Qm, kr/u		2016.01.14.16:30:58.34	23,50		0							
Qp, мª/ч	121	2016.01.14 16:31:02.34	23.52		D							
Qcт. м ^е /ч	E	2016.01.14 16:31:04.34	23.49									
Vзв, м/с		2016.01.14 16:31.06.34	23.49									
Vпот, м/с	旧											
Vct,M ^a												
Vст,обр [м*]	E											
Код НС	<u> </u>											
т, °С	V											
							B1:COM7	Tx R	x B2:COM9	Tx	Rx Допо	лнит.
					1	-						

Рисунок 2.37

авнительный анализ	Параметры	Диагностика	Состав	газа РСГ №	1 PCF №2	1				
Показания прибора	Тр	өнды	Регист	ация данных	Ар	хивные д	анные			
ип архива				2016.01	14 3	2016.01.14	2016.01.14	2016.01.14	2016.01.14	
Данные за час 🔹				12:00	00 0010 01 1	13:00:00	14:00:00	10:00:00	16:00:00	
	• Дото/вре	мя записи		2016/01/14 12:00	2010.01.1	4 13:00:00	2016.01.14 14:00:00	2016.01.14 15:00:00		
Ганал 1 +	Объем ра	вочия, л		420	170	20144		1500570		
Объем стан		андартный, л		4123	12	37586		607067		
Начало интервала Объем вос		осстановленный рар	очии, л	4132	E1	0		1200257		
14 января 2016 12 ч. Ш≠	Объем восстановленный		0220	20	7659	7659	8475	8		
Конецинтервала	Объем су	ммарный расочий, м		151	61	15100	15100	10705	3	
4 august 2016 16 🗇 -	Объем су	ммарныи стандартн	ый, м-	131	0	10100	13188	222		
ч инваря 2010 104 шт	Объем ра	осчии реверсивный	, n 		0	0	0	218		
Кол-во записей 5	Объем стандартный реверсивный, л			0	0	0	0			
	Объем во	сстановленный ста	INONTHUR		0	0	0	0	-	
Считать	Объем си	миалиый пабрыий	wap nam.		0	0	0	0		
0.000	Объем су	ммариый стаиларти	ый		0	0	0	0		
	Kostytwa	иент сулмеемости		0.9998	69	1 000102	1 000108	0 999734	-	
Отмана	Ловление			0 1	111	0.1	0.1	0 119	2	
Отображение записей	Томпорат	DVDS °C		22	04	22.8	23.12	22.75	2	
	Казффии	иент перевола		1,1017	708	0.985548	0.985083	1,179736	0	
По строкам	Kaa HC	пент перевода		0x800200	000 000	00000000	0x00000000	0x80020000		
По столбцам	Количест	во точак		179	999	17997	17997	18006		
	Время НО	С (Общий бит НС от I	П), сек		0	0	0	0		
	Время НО	(Нет питания), сек		4	13	0	0	698	-	
	Время НО	С (Нет связи), сек			0	0	0	0		
	Время НО) (Q > Qmax или Qoto	= Q <=		0	0	0	0	2	

Рисунок 2.38

2.8.6 При заказе расходомера с дублированием должны быть оговорены вид дублирования (полное или частичное), конфигурация и габариты.

2.8.7 При частичном дублировании (исполнение № 1) комплект расходомера, к которому подключены УЗ датчики, является основным, второй – дублирующим. В обозначении заводского номера основного комплекта в конце после разделительной наклонной линии указывается его единица «/1», а в конце заводского номера дублирующего – двойка «/2».

<u>Пример:</u> Для основного комплекта: «Зав. № 90100/1», для дублирующего: «Зав. № 90100/2».

2.8.8 Для дублирующего комплекта в программе «DualHead UFG Viewer» в разделе «РСГ №» в закладке «Показания прибора» измеренные скорости звука и потока по лучам всегда будут равны нулю.

2.9 Самодиагностика

В ходе работы расходомера постоянно отслеживаются отклонения измеренной скорости звука на луче от средней скорости звука, соотношение сигнал/шум, а так же настройки усиления (настройки АРУ). Если эти величины превышают установленные пороговые значения, генерируется сигнал предупреждения «Внимание» или сигнал аварии «НЕНОРМА».

Текущие параметры самодиагностики выдаются в виде таблицы в закладке «Показания прибора» основного окна технологического программного обеспечения (рисунок 2.39).

Сигнал предупреждения «Внимание» не оказывает влияния на работу прибора. Сигнал аварии «НЕНОРМА» отключает аварийный луч. Результаты измерений по отключенному лучу не берутся в расчет и не влияют на итоговый результат измерений прибора.

Система самодиагностики реализована на базе контроля трех параметров: измеренной скорости звука, соотношения сигнал-шум и коэффициента усиления сигнала АРУ.

Перечень функций самодиагностики:

1) отклонение измеренной скорости звука луча от средней свыше критерия 1*; выдается сигнал предупреждения «Внимание»;

2) отклонение измеренной скорости звука луча от средней свыше критерия 2**; выдается сигнал аварии луча «НЕНОРМА»; луч отключается;

3) отношение сигнал-шум менее критического значения (менее 15 дБ); выдается сигнал аварии «НЕНОРМА»; луч отключается;

4) достигнут предел индекса коэффициента усиления АРУ (0 при максимальном усилении, 119 – при минимальном); выдается сигнал предупреждения «Внимание».

Возможные сигналы по колонкам контролируемых параметров таблицы самодиагностики приведены в таблице 2.2.

Таблица 2.2			
Луч №	Vзв	C/III	АРУ
1N	Норма Внимание Ненорма	Норма Ненорма	Норма Внимание

Цвет заливки:

– норма – зеленая;

– внимание – желтая;

– ненорма – красная.

* - критерий 1 задает порог отклонений измеренной скорости звука по лучам, при превышении которого система самодиагностики выдает предупреждение; настраиваемый параметр, по-умолчанию критерий 1 равен 1,5 %.

** - критерий 2 задает порог отклонений измеренной скорости звука по лучам, при превышении которого система самодиагностики отключает проблемный луч и выдает сигнал аварии «Ненорма»; настраиваемый параметр, по-умолчанию критерий 2 равен 5 %.

Функции самодиагностики представлены в таблице 2.3.

Таблица 2.3

Параметр	Пороговое	Сообщение	Примечания
	1,5 %	Сигнал предупреждения «Внимание»	Сообщение выдается, если текущая измеренная скорость звука на луче отличается от усредненного значения, рассчитанного для всех лучей более чем на заданное пороговое значение (более Критерия 1). Служит для показания, измеряется ли на луче корректное время прохожления
Скорость звука	5 %	Сигнал аварии «Ненорма»	Сообщение выдается, если текущая измеренная скорость звука на луче отличается от усреднённого значения, рассчитанного для всех лучей более чем на заданное пороговое значение (более Критерия 2). Луч отключается и не влияет на результат измерений.
Соотношение сигнал-шум	15 дБ	Сигнал аварии «Ненорма»	Этот сигнал тревоги активируется если соотношение сигнал-шум становиться слишком малым. Возможные причины: - шумовые помехи; - неисправные УЗ приемо- передатчики.
Усиление	Индекс АРУ 0	Сигнал предупреждения «Внимание»	Сигнал предупреждения выдается, если достигнут максимальный коэффициент усиления системы АРУ. Возможные причины: - давление в трубопроводе меньше атмосферного; - загрязнение УЗ датчиков.
сигнала	Индекс АРУ 119	Сигнал предупреждения «Внимание»	Сигнал предупреждения выдается, если достигнут минимальный коэффициент усиления системы АРУ. Возможные причины: - давление газа в трубопроводе превышает максимальное рабочее.

Рисунок 2.39 Окно программы с параметрами самодиагностики

В качестве первого примера на рисунке 2.40 приведена реакция системы самодиагностики на отклонение измеренной скорости звука по первому лучу от средней более Критерия 1.

На рисунке 2.41 приведена реакция системы самодиагностики на комбинированный случай, когда луч 2 отключен вследствие превышения отклонения скорости звука Критерия 2 и по четвертому лучу достигнут максимум коэффициента усиления системы АРУ.

Рисунок 2.40

По первому лучу отклонение измеренной скорости звука от средней превышает Критерий 1.

Рисунок 2.41

По второму лучу отклонение измеренной скорости звука от средней превышает Критерий 2, луч отключен; по четвертому лучу достигнут максимум коэффициента усиления системы АРУ.

К дополнительным параметрам самодиагностики относятся: окно параметров, характеризующих пространственные свойства потока (рисунок 2.42) и эпюра скоростей потока в измерительном сечении (рисунок 2.43).

Рисунок 2.42

2.10 Сигнальные выходы

2.10.1 Назначение

Для взаимодействия со сторонними электронными системами или АСУ расходомер кроме основного цифрового интерфейса стандарта RS485 содержит один токовый, два частотных и два импульсных сигнальных выходов.

2.10.2 Расположение разъемов сигнальных выходов

Для доступа к разъемам сигнальных выходов УПР необходимо открутить заднюю крышку корпуса BP-20.

Разъемы XA2 и XA3 выходных сигналов расположены на плате внешних подключений (рисунок 2.44). В таблице 2.5 приведено назначение контактов разъемов выходных сигналов.

Рисунок 2.44

Табл	ица 2.4		-
	№ контакта	Обозначение	Назначение
	XA2-3	-IMP2	Импульсный выход 2
	XA2-4	+IMP2	Импульсный выход 2
	XA3-1	+I	Выход 4-20 мА
	XA3-2	-I	Выход 4-20 мА
	XA3-3	+IMP1	Импульсный выход 1
	XA3-4	-IMP1	Импульсный выход 1

2.10.3 Токовый выход

В УПР реализован токовый выход стандарта 4-20 мА. Схема подключения нагрузки к токовому выходу (рисунок 2.45). Сопротивление нагрузки не должно превышать 500 Ом.

Рисунок 2.45

Окно настройки токового выхода на работу по рабочим или стандартным условиям (рисунок 2.46). Токовый выход может быть настроен для работы по рабочим или стандартным условиям. Для работы по рабочим условиям необходимо снять галочку с параметра «Токовый выход» в настройках регистра управления, для работы по стандартным условиям – установить.

Изменение значения	×							
Регистр управления								
🗵 вкл. ведение архива	*							
📝 вкл. избыточный датчик давления								
🔲 частотный выход 1: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям								
🔲 импульсный выход 1: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям								
🔲 частотный выход 2: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям								
🔲 импульсный выход 2: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям								
🔲 Токовый выход: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям								
Вкл. импульсный выход вместо частотного								
🔲 🔲 Вкл. дублирование импульсного выхода								
🔲 📃 вкл. ведение объема часового архива в м [®]								
🔲 🛄 Выход на http								
🔲 🔲 вкл. bluetooth при старте								
🔲 📃 вкл. GSM при старте								
🔲 вкл. тест csd	Ŧ							
	_							
Отмена Записать Записать позже								

Рисунок 2.46

Окно настройки параметров токового выхода (рисунок 2.47). Параметры токового выхода сохраняются в электронном блоке корпуса ВР-20.

Ha	стройки интер	офейса и токового выхода (параметров: 10; исп. адреса 0x1050-0x	:1061)			
		Название	Тип данных	Доступ	Текущее значение	Ед. изм.
۲	0x1050	Скорость обмена по внешнему интерфейсу	E_UInt32	RW	9600 Бит/с	
Γ	0x1052	Значение расхода для тока 4 мА	Float32	RW	0	м³/ч
	0x1054	Значение расхода для тока 20 мА	Float32	RW	280	M3/4
	0x1056	Смещение тока токового выхода, мА	Float32	RW	0	
	0x1058	Усиление тока токового выхода, мА	Float32	RW	1	
	0x105A	Смещение переменной токового выхода по расходу	Float32	RW	0	
	0x105C	Усиление переменной токового выхода по расходу	Float32	RW	1	
_	0x105E	Ретранслирование данных для ИСП	E_UInt16	RW	ВКП на 30 минут	
	0x105F	Заводской номер	UInt32	RW	1234567890	
	0x1061	Задержка отправки ответа на 50 мс	E_UInt16	RW	Отключена	

Рисунок 2.47
Ток токового выхода может быть определен по формуле:

$$I = \left(\left(I_{max} - I_0 \right) \cdot \frac{Q_{\text{MBM}}}{Q_{max}} \right) + I_0,$$

где I_{max} и Q_{max} – максимальные значения тока (мА) и расхода (м³/ч); I_0 – значение тока, соответствующее нулевому значению расхода.

2.11.4 Частотные выходы

Расходомер содержит два независимых частотных выхода. Первый частотный выход связан с прямым расходом, второй – с реверсивным.

Схема подключения к частотному выходу (рисунок 2.48). Сопротивление резистора R_{μ} выбрать таким образом, чтобы ток в измерительной цепи I=E/R находился в пределах от 1 до 10 мА.

Рисунок 2.48

Частотные выходы могут быть настроены для работы по рабочим или стандартным условиям. Для работы по рабочим условиям необходимо снять галочки с параметра «частотный выход» в настройках регистра управления, для работы по стандартным условиям – установить.

Окно настройки частотных выходов на работу по рабочим или стандартным условиям (рисунок 2.49).

Изменение значения
Регистр управления
🗷 вкл. ведение архива
🔲 вкл. избыточный датчик давления
🔲 частотный выход 1: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям
📃 импульсный выход 1: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям
🔲 частотный выход 2: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям
🔲 импульсный выход 2: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям
🗷 Токовый выход: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям 👘
🔲 Вкл. импульсный выход вместо частотного
🔲 Вкл. дублирование импульсного выхода
🔲 вкл. ведение объема часового архива в м ^а
🗷 Выход на http
🔲 вкл. bluetooth при старте
🗷 вкл. GSM при старте
🔲 вкл. тест csd 🔹
Отмена Записать Записать позже

Рисунок 2.49

Окно настройки параметров частотных выходов (рисунок 2.50). Параметры частотных выходов сохраняются в электронном блоке корпуса ВР-20.

Общие настро	ййки (параметров: 26; исп. адреса 0x100A-0x1038)				
	Название	Тип данных	Доступ	Текущее значение	Ед. изм.
0x1010	Сетевой адрес вычислителя	UInt16	RW	1	
0x1011	Период опроса ПП	UInt32	RW	100	MC
0x1013	Сетевой адрес ПП	UInt16	RW	16	
0x1014	Регистр управления	F_UInt32	RW	0x14000101	
0x1016	Время активности подсветки	UInt16	RW	300	с
0x1017	Время активности дисплея	UInt16	RW	65535	с
0x1018	Время активности заставки	UInt16	RW	5	с
0x1019	Минимальная Частота частотного выхода 1	Float32	RW	0	Гц
0x101B	Максимальная Частота частотного выхода 1	Float32	RW	70	Гц
0x101D	Максимальный расход 1	Float32	RW	280	
0x101F	Частотный фактор выхода 1	Float32	RW	900	
0x1021	Смещение Частоты частотного выхода 1	Float32	RW	0	
0x1023	Усиление Частоты частотного выхода 1	Float32	RW	1	
0x1025	Смещение Переменной частотного выхода 1	Float32	RW	0	
0x1027	Усиление Переменной частотного выхода 1	Float32	RW	1	
0x1029	Минимальная Частота частотного выхода 2	Float32	RW	0	Гц
0x102B	Максимальная Частота частотного выхода 2	Float32	RW	70	Гц
0x102D	Максимальный расход 2	Float32	RW	280	
0x102F	Частотный фактор выхода 2	Float32	RW	900	
0x1031	Смещение Частоты частотного выхода 2	Float32	RW	0	
0x1033	Усиление Частоты частотного выхода 2	Float32	RW	1	
0x1035	Смещение Переменной частотного выхода 2	Float32	RW	0	
0x1037	Усиление Переменной частотного выхода 2	Float32	RW	1	

Рисунок 2.50

Частота сигнала частотного выхода может быть определена по формуле:

$$F = F_{max} \cdot \frac{Q_{uxm}}{Q_{max}},$$

где F_{max} и Q_{max} – максимальные значения частоты (Гц) и расхода (м³/ч).

Максимальная частота:

$$F_{max} = \frac{IF \cdot Q_{max}}{3600},$$

где IF – импульсный фактор, имп/м³.

Значение максимальной частоты F_{max} задается в соответствии с требованиями заказчика, однако не может превышать 5000 Гц. В случае отсутствия конкретных требований, F_{max} задается равной 1000 Гц.

2.10.5 Импульсные выходы

Расходомер содержит 2 отдельных импульсных выхода, функционально связанных с прямым и обратным расходами. Конструктивно импульсные выходы объединены с частотными выходами. Переключение режима работы частотный/импульсный осуществляется программно.

Окно параметров управления импульсными выходами (рисунок 2.51).

Для активации импульсного выхода необходимо установить галочку напротив параметра «Вкл. импульсный выход вместо частотного»

Импульсный выход может быть настроен для работы по рабочим или стандартным условиям. Для работы по рабочим условиям необходимо снять галочку с параметра «импульсный выход 1» в настройках регистра управления, для работы по стандартным условиям – установить.

Для импульсных выходов существует только один настраиваемый параметр – вес импульса (рисунок 2.52). Рекомендуется вес импульса принять равным 1 м³/имп. Параметры импульсных выходов сохраняются в электронном блоке корпуса ВР-20.

Изменение значения	×
Регистр управления	
🗷 вкл. ведение архива	*
🔲 вкл. избыточный датчик давления	
📃 частотный выход 1: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям	
🔲 импульсный выход 1: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям	
🔲 частотный выход 2: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям	
🔲 импульсный выход 2: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям	
Токовый выход: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям	-
Вкл. импульсный выход вместо частотного	
Вкл. дублирование импульсного выхода	
вкл. ведение объема часового архива в м ³	
Buxod Ha http	
Вкл. bluetooth при старте	-1
🖉 вкл. GSM при старте	
вкл. тест csd	Ψ.
	_
Отмена Записать Записать позже	

Рисунок 2.51

Ha	остройки диап	азонов (параметров: 13; исп. адреса 0x1800-0x1819)				
		Название	Тип данных	Доступ	Текущее значение	Ед. изм.
	0x1800	Ограничение по минимальному расходу	Float32	RW	1.4	м³/ч
	0x1802	Ограничение по максимальному расходу	Float32	RW	280	м³/ч
	0x1804	Отсечка по расходу	Float32	RW	0.7	M3/4
	0x1806	Договорной расход	Float32	RW	280	M3/4
	0x1808	Договорной расход при Qотс <q<qмин< td=""><td>Float32</td><td>RW</td><td>0</td><td>M3/4</td></q<qмин<>	Float32	RW	0	M3/4
	0x180A	Минимальная температура	Float32	RW	-50	°C
	0x180C	Максимальная температура	Float32	RW	70	°C
	0x180E	Договорная температура	Float32	RW	10	°C
	0x1810	Минимальное давление	Float32	RW	0	МПа
	0x1812	Максимальное давление	Float32	RW	1	МПа
	0x1814	Договорное давление	Float32	RW	0,201325	МПа
	0x1816	Барометрическое давление	Float32	RW	0,101325	МПа
	Ox1818	Вес импульса	Float32	RW	1	м³/Имп

Рисунок 2.52

Период следования импульсов сигнала импульсного выхода может быть определен по формуле:

$$\mathrm{T}=\frac{P}{Q}\cdot3600,$$

где P – вес импульса, (m^3 /имп); Q – расход газа (m^3 /ч).

В таблице 2.5 приведены результаты расчета максимального и минимального периодов сигнала импульсного выхода соответственно для минимального Q_{min} и максимального Q_{max} расходов при весе импульса P=1 м³/имп.

При выборе веса импульса необходимо учитывать, что минимальный период сигнала импульсного выхода должен быть не менее 0,1 с.

DN, мм	$Q_{min}, M^3/H$	Q _{max} , м ³ /ч	T _{max} , c	T _{min} , c
50	1,4	280	2571,43	12,8571
65	2,2	440	1636,36	8,1818
80	3,5	700	1028,57	5,1429
100	5,5	1100	654,55	3,2727
125	8	1600	450,00	2,2500
150	12	2400	300,00	1,5000
200	22	4400	163,64	0,8182
250	35	7000	102,86	0,5143
300	50	10000	72,00	0,3600
350	60	12000	60,00	0,3000
400	80	16000	45,00	0,2250
450	100	20000	36,00	0,1800
500	125	25000	28,80	0,1440

2.11 Настройка диапазонов

2.11.1 Настройка диапазонов в электронном блоке корпуса ВР-20

В электронном блоке корпуса BP-20 осуществляется настройка диапазонов по расходу, температуре и давлению. Работа с параметрами настройки диапазонов осуществляется посредством программы XG Viewer. Окно параметров настройки диапазонов в BP-20 (рисунок 2.53).

Ограничение по минимальному и максимальному расходу определяется как 0,8·Q_{min} и 1,2·Q_{max} соответственно (допуск в 20 %). При выходе измеренного значения расхода за указанные пределы будут сгенерированы соответствующие признаки внештатных ситуаций.

Отсечка по расходу устанавливается на уровне $Q_{orc}=0,5 \cdot Q_{min}$. В случае, если измеренное значение расхода окажется меньше чем Q_{orc} , за результат измерений будет принят нулевой расход.

Расчетные значения параметров ограничения расхода и отсечки приведены в таблице 2.6.

	Настройки диаг	азонов (параметров: 13; исп. адреса 0x1800-0x1819)				
		Название	Тип данных	Доступ	Текущее значение	Ед. изм.
	0x1800	Ограничение по минимальному расходу	Float32	RW	9,6	M3/4
	0x1802	Ограничение по максимальному расходу	Float32	RW	2880	M3/4
Считывать при выборе Опрос 2 сек	0x1804	Отсечка по расходу	Float32	RW	6	M3/4
	0×1806	Договорной расход	Float32	RW	2400	M3/4
- Пауза перед измерением	0x1808	Договорной расход при Qотс <q<qмин< td=""><td>Float32</td><td>RW</td><td>0</td><td>М3/4</td></q<qмин<>	Float32	RW	0	М3/4
— Настройки измерения температу	0x180A	Минимальная температура	Float32	RW	-50	°C
– Настройки измерения давления	0x180C	Максимальная температура	Float32	RW	70	'C
– Настройки частотного выхода	0x180E	Договорная температура	Float32	RW	10	°C
— Конфигурация GP22	0x1810	Минимальное давление	Float32	RW	0	МПа
- Настройки АРУ	0x1812	Максимальное давление	Float32	RW	1,6	МПа
– Начало окна сканирования АРУ	▶ 0x1814	Договорное давление	Float32	RW	1	МПа
Размер окна сканирования АРУ	0x1816	Барометрическое давление	Float32	RW	0,101325	МПа
🗈 Таблицы линеаризации	0x1818	Вес импульса	Float32	RW	1	м³/Имп
Идентификация						
Настройка диагностики						
BP-20 UFG Visual						
Текущие значения						
Диагностика						
Общие настройки						
– Настройки Bluetooth						
Настройки интерфейса и токового в						
Выход на связь						
Настройки диапазонов						
Управление архивом						

Рисунок 2.53

DN. MM	Скорост газа	ь потока , м/с	Расхо	од газа, ³ /ч	Огран расхо,	ичение да, м ³ /ч	Отсечка по расходу
. ,	V_{min}	V _{max}	Q_{min}	Q _{max}	0,8 Q _{min}	1,2 Q _{max}	$Q_{\text{otc}}=0,5Q_{\text{min}}, M^3/\Psi$
50	0,198	39,61	1,4	280	1,12	336	0,7
65	0,184	36,83	2,2	440	1,76	528	1,1
80	0,193	38,7	3,5	700	2,8	840	1,75
100	0,194	38,9	5,5	1100	4,4	1320	2,75
125	0,181	36,21	8	1600	6,4	1920	4
150	0,188	37,72	12	2400	9,6	2880	6
200	0,194	38,9	22	4400	17,6	5280	11
250	0,198	39,61	35	7000	28	8400	17,5
300	0,196	39,3	50	10000	40	12000	25
350	0,173	34,64	60	12000	48	14400	30
400	0,177	35,367	80	16000	64	19200	40
450	0,175	34,93	100	20000	80	24000	50
500	0,177	35,367	125	25000	100	30000	62,5

Договорной расход при $Q_{\text{orc}} < Q < Q_{\text{min}}$ задается равным Q_{min} .

Предельные значения температур и давления газа задаются в соответствии с условиями эксплуатации прибора. При выходе измеренных значений температуры и/или давления будут сгенерированы соответствующие признаки внештатных ситуаций, за результат измерений будут приняты договорные значения температуры и давления.

2.12 Выбор кабеля питания и связи

2.12.1 Кабель питания и связи предназначен для организации электропитания УПР от рабочего шкафа или шкафа с ППК, обмена данными между ними по интерфейсу RS-485, а так же для передачи импульсных и токовых выходных сигналов от УПР.

Исходными данными при выборе кабеля являются длина линии, соединяющей рабочий шкаф с УПР и комбинация интерфейсов УПР.

Эквивалентная схема питания УПР приведена на рисунке 2.54. При организации электропитания УПР необходимо обеспечить, чтобы падение напряжения на линии не превышало 6 В при максимальном потребляемом токе 0,3 А. Таким образом, сопротивление одной жилы кабеля питания не должно превышать 10 Ом.

Рисунок 2.54

В таблице 2.7 приведены результаты расчета сопротивления одной жилы кабеля питания в зависимости от длины линии, сечения жилы и числа, параллельно соединенных жил.

Длина	Сечение,	Сопротивление	Число	Сопротивление	R _{л доп} ,
L, м	MM ²	1 км жилы, Ом	жил	R _л , Ом	Ом
100	0,5	40,5	1	4,1	
200	0,75	25,2	1	5,0	
300	1,2	16	1	4,8	
400	1,5	13,5	2	2,7	
500	1,5	13,5	2	3,4	10
600	1,5	13,5	2	4,1	10
700	1,5	13,5	2	4,7	
800	1,5	13,5	2	5,4	
900	1,5	13,5	3	4,1	
1000	1,5	13,5	3	4,5	

В качестве кабеля питания и связи рекомендуется использовать кабель типа МКЭШв или МКЭШвнг. Данный кабель предназначен для передачи данных в промышленных сетях и взрывоопасных зонах (класс IIBT4).

В таблице 2.8 приведены технические и эксплуатационные характеристики кабеля МКЭШв. Кабель МКЭШв или МКЭШвнг может эксплуатироваться при температуре окружающей среды от -50° до +50°C во всех климатических районах, в том числе с повышенной влажностью и температурой.

Пример обозначения: МКЭШвнг 2х2х1.0: универсальный кабель МКЭШвнг две витые пары с сечением жилы 1мм². Приставка нг – негорючь.

При температуре окружающей среды от минус 50° до плюс 70°С - кабель КММ.

Таблица 2.8

Рабочее напряжение, кВ	0,75
Температура окружающей среды при эксплуатации кабеля, °С	от минус 50 до плюс 50
Минимальная температура прокладки кабеля без предварительного подогрева, °С	минус 15
Предельная длительно допустимая рабочая температура жил, °С	70
Максимальная температура нагрева жил при коротком замыкании, °С	160
Относительная влажность воздуха, %	98
Срок службы	15 лет
Гарантийный срок эксплуатации	3 года

В таблице 2.9 представлен выбор числа пар и сечения кабеля для подсоединения УПР к шкафам с выходным напряжением 18 В. Данные таблицы относятся к марке кабеля МКЭШв или МКЭШвнг с общим экраном ОЭ (если нужна броня в кабеле, то марка кабеля МКЭКШв или МКЭКШвнг).

Комбинация интерфейсов 1	Питание+RS485	Питание+RS485 +резерв	Питание+RS485 +1 имп.вых. + резерв	Питание+RS485 +1 имп.вых. +2 имп.вых + резерв	Питание+RS485 +1 имп.вых. +2 имп.вых 4-20ма резерв
Комбинация интерфейсов 2	_	Питание+RS485 +1имп.вых	Питание+RS485 +1 имп.вых. +2 имп.вых	Питание+RS485 +1 имп.вых. +2 имп.вых 4-20ма	_
Длина линии	2-пары	3-пары→4-пары	4-пары	5-nap	6 -nap \rightarrow 7-nap
100 м	2x2x0,5	4x2x0,5	4x2x0,5	5x2x0,5	7x2x0,5
200 м	2x2x0,75	4x2x0,75	4x2x0,75	5x2x0,75	7x2x0,75
300 м	2x2x1,2	4x2x1,2	4x2x1,2	5x2x1,2	7x2x1,2
	3-пары=4-пары	4-пары	5-nap	6-nap=7-nap	7-nap
400 м соединение 2х питающих пар	4x2x1,5	4x2x1,5	5x2x1,5	7x2x1,5	7x2x1,5
500 м соединение 2х питающих пар	4x2x1,5	4x2x1,5	5x2x1,5	7x2x1,5	7x2x1,5
600 м соединение 2х питающих пар	4x2x1,5	4x2x1,5	5x2x1,5	7x2x1,5	7x2x1,5
700 м соединение 2х питающих пар	4x2x1,5	4x2x1,5	5x2x1,5	7x2x1,5	7x2x1,5
800 м соединение 2х питающих пар	4x2x1,5	4x2x1,5	5x2x1,5	7x2x1,5	7x2x1,5
	4-пары	5-пары	6 -nap \rightarrow 7-nap	7-nap	8-nap→10-nap
900м соединение 3х питающих пар	4x2x1,5	5x2x1,5	7x2x1,5	7x2x1,5	10x2x1,5
1000 м соединение 3х питающих пар	4x2x1,5	5x2x1,5	7x2x1,5	7x2x1,5	10x2x1,5

Таблица рекомендаций по применению кабелей связи UFG представлена в таблице 2.10.

Таблица 2.10

Наименование кабеля	Диапазон температур, °С	Примечание
МКЭШв	минус 50 плюс 70	РШ с ПК (без ПК) - взрывозащита вида 1ExdIICT6
КММ	минус 30 плюс 70	РШ с ПК (без ПК) - без взрывозащиты

2.13 Работа с Bluetooth

2.13.1 Для считывания архива или настроек через Bluetooth (БТ) необходимо вначале настроить беспроводное соединение. Рассмотрим порядок настройки.

2.13.1.1 Включить БТ в модуле ВР-20. Для этого стилусом нажать кнопку «вправо» два раза. Появится иконка «В» в правом верхнем углу индикатора.

2.13.1.2 Вставить блютуз-адаптер в USB разъем ПК. Установить необходимые драйверы для данной модели адаптера.

2.13.1.3 Добавить устройство (ВР-20) в систему. Для этого:

1) щелкнуть левой кнопкой мыши по значку «вверх» в трее для показа скрытых иконок;

2) нажать правой кнопкой мыши на иконку bluetooth, выбрать «Добавить устройство» (рисунок 2.55);

Рисунок 2.55

3) появится окно с доступными устройствами. Дождаться, пока модуль BP20 определится системой (должно отобразиться его имя). Выбрать данное устройство и нажать кнопку «Далее»;

4) выбрать вариант подключения через ввод кода образования пары и нажать кнопку «Далее» (рисунок 2.56);

выб	ерите вариант подключения	
+	Создать код образования пары Устройство оснащено клавиатурой.	0
•	Введите код образования пары устройства Код образования пары поставляется вместе с устройством. Код можно найти на устройстве или в соответствующем руководстве.	DI07MPa
•	Связывание без кода Для устройств этого типа, например, мыши, не требуется наличие безопасного подключения.	

Рисунок 2.56

5) ввести код образования пары «1234» и нажать кнопку «Далее»;

6) дождаться окончания процедуры связывания;

7) далее необходимо определить СОМ-порт для связи. Для этого щелкнуть правой кнопкой по значку блютуз устройств в трее. Выбрать «Показать устройства блютуз» (рисунок 2.57);

Рисунок 2.57

8) появится окно с доступными устройствами. Выбрать требуемое устройство (модуль ВР20), нажать на его значок правой кнопкой. Выбрать «Свойства»;

9) в появившемся окне выбрать вкладку «Службы». Напротив службы «Последовательный порт SPP» будет отображаться номер СОМ-порта, который необходимо выбрать в APMe (рисунок 2.58);

	 Панель управления → Все элементы панели управления → Устройства и принтеры → Устройства Вlue
Добавление у • Устройства ОПОТМРа	стройства Установка принтера Удалить устройство а (1) Свойства: DI 07MPa Свойства: DI 07MPa Свойства: DI 07MPa Общие Оборудование Службы Bluetooth Это устройство Bluetooth предоставляет следующие службы. Установите флажок для выбора соответствующей службы. Службы Bluetooth Глужбы Bluetooth Последовательный порт (SPP) "Dev B" <u>COM34</u>
	ОК Отмена Применить

Рис. 2.58

10) запустить APM (версия не ниже 1.29), выбрать устройство BP20 UFG Visual. Номер СОМ-порта указать тот, который определили в предыдущем пункте;

11) выбрать вкладку «архивы» для чтения архивов. Произвести чтение за требуемый диапазон;

2.13.1.4 После окончания работы с АРМом выключить блютуз-адаптер на ПК.

2.13.1.5 Выключить модуль блютуз на ВР-20. Для этого два раза коснуться стилусом кнопки «Вправо». Иконка «В» на индикаторе пропадает.

3 КАЛИБРОВКА

3.1 Калибровка имитационным методом (сухая калибровка)

3.1.1 Целью сухой калибровки является коррекция смещений нулей УПР и отклонений измеренных скоростей звука от расчетного значения по каждому акустическому каналу.

3.1.2 Подготовка к калибровке

Калибровку проводят в помещении при стабильной температуре воздуха. На фланцы УПР устанавливают заглушки, оснащенные штуцерами для подачи тестового газа в корпус УПР и монтажа СИ температуры и давления. Подключают СИ температуры и давления.

В качестве тестового газа используется азот особой чистоты по ГОСТ 9293-74. Внутренняя полость корпуса УПР перед заполнением азотом должна быть предварительно продута тем же самым азотом. Рекомендуется перед подачей азота из корпуса УПР откачать воздух. При этом абсолютное давление остаточного воздуха в корпусе УПР должно быть не более 2 кПа.

Корпус УПР заполняют тестовым газом, пока давление газа не достигнет необходимого значения, равного среднему рабочему давлению.

Проводят проверку давления не менее чем через 1 час после заполнения корпуса тестовым газом. Изменение давления означает наличие протечки газа через заглушки.

3.1.3 Выполнение калибровки

Процесс сухой калибровки автоматизирован. Для выполнения калибровки необходимо выполнить следующие действия:

1) С помощью АРМ подключиться к первичке UFG (к измерителю скорости потока UFG).

2) В меню «Инструменты» выбрать пункт «Проверка имит. методом».

3) В открывшемся окне перейти на закладку «Проверка смещения нуля и измеренных скоростей звука» (рисунок 3.1).

Характеристи	ка прибора				Условия окружающей сре	ды		
Прибор	Turbo Flow UFG	Условный диаметр	MM	150.0	Температура,°С	23,1		
Зав. №	123456	Минимальный расх	од, м ^з /ч		Отн. влажность, %	57		
Версия МЗПС	1.01	Максимальный рас	ход, м ^е /ч		Атмосферное давление, к	Па 101,325		
Версия МНПС) 1.07]		Обновить	Измеряемая среда Азот по ГОСТ 9293-74			
Іроверка герм	етичности Проверка	смещения нуля и отклон	нений изме	ренных скоростей звун	(a			
Макс. допус	ст. Vпот (см. нуля), пучам: Tcp=17,92°C, <mark>с</mark>	м/с 0.010 → Ма Т=0.03°С; Рср=0,1009 М	кс. откл. \ Па. dP=0.05	/зв по лучам, % 0 . 56%	10 🚽 Макс. доп. Vзв	- Vзв.азот, % 0.10		
		Луч 1		Луч 2	Луч З	Луч 4		
 Длина ход 	а луча (УЗПР), мм		0,153	0,17	4 0,175	5 0,1		
Скорость г	потока (Vпот), м/с		0		6 -0,008	0,007		
Скорость г	потока (средняя), м/с		0,0011	-0,001	1 0,0002	0,0051		
Максимал	ьная девиация Vпот, м	ı/c	0,0135	0,010	7 0,0158	0,0187		
Разности (средние, мкс		0,001	-0,00	2 0,000	0,006		
Скоросты	звука (Vзв), м/с		347,845	347,8856 34		347,8105		
Скорость з	звука (средняя), м/с		347,8413	347,884	7 347,8464	347,8097		
Максимал	ьная девиация Vзв, м/о	C	0,01	0.0	1 0.01	0.01		
Отн. погре	ешность Vзв, %		-0,01%	0,01	% -0,01%	-0,02%		
Поправки	Vзв, м/с		0,0216	-0,021	8 0,0165	0,0532		
	ка по лучам должн	ы быть стабильными ечение 10 минут	Нач	ать проверку	Коррекция нулей	Коррекция Коростей звука		
Скорости зву (девиация н	е оолее 0,2 м/с) в т							
Скорости зву (девиация н Интервал опро Средняя скор	е облее 0,2 м/с) в т оса, сек 1 🗐 Про, рость звука в азоте	должит., сек 100 – , м/с 347.8629	Завер	шить проверку	Печать протоколов			

Рисунок 3.1

4) В случае необходимости выполнить коррекцию нулей потока и измеренных скоростей звука с помощью кнопок «Коррекция нулей» и «Коррекция скоростей звука». После коррекции повторить проверку, выполнив пункты 1..5 данной методики.

5) Распечатать протоколы калибровки. По результатам сухой калибровки формируются 2 протокола:

- протокол проверки смещения нуля;

– протокол проверки измеренных скоростей звука.

3.2 Калибровка по расходу

3.2.1 Целью калибровки по расходу является определение поправочных коэффициентов для приведения измеренных скоростей потока по каждому лучу к средней скорости потока по сечению.

3.2.2 Калибровка УПР по расходу выполняется на калибровочном стенде. Количество и расположение испытательных точек для УПР различных диаметров приведено в таблице 3.1.

Монн	% от	D=50	D=80	D=100	D=150	D=200	D=250	D=300	D=400	D=500
JNºIIII	Q_{max}	MM	MM	MM	MM	MM	MM	MM	ММ	MM
1	Q_{\min}	1,4	3,5	5,5	12	22	35	50	80	125
2	1	2,8	7	11	24	44	70	100	160	250
3	5	14	35	55	120	220	350	500	800	1250
4	10	28	70	110	240	440	700	1000	1600	2500
5	25	70	175	275	600	1100	1750	2500	4000	6250
6	50	140	350	550	1200	2200	3500	5000	8000	12500
7	65	182	455	715	1560	2860	4550	6500	10400	16250
8	100	280	700	1100	2400	4400	7000	10000	16000	25000

Таблица 3.1

3.2.3 В общем случае калибровка УПР осуществляется в два этапа. На первом этапе выполняется калибровка в прямом потоке, на втором – в реверсивном. Если калибруется нереверсивный УПР, то выполняется только первый этап калибровки в прямом потоке.

3.2.4 Калибровка по скорости автоматизирована посредством АРМ.

3.2.5 Максимальное количество точек калибровки, включая точку с нулевой скоростью, равно 16.

3.2.6 Калибровка в прямом потоке

1) С помощью APM подключиться к первичному измерительному преобразователю UFG (к измерителю скорости потока). В меню «Инструменты» выбрать «Калибровка по скорости» (рисунок 3.2).

2) С помощью калибровочного стенда задать эталонный расход и выдержать паузу не менее 1 минуты для установления показаний расходомера.

3) В окне калибровки по скорости потока задать необходимые параметры калибровки, эталонный расход первой точки и нажать кнопку «Начать накопление» (рисунок 3.3).

Рисунок 3.2

Калибровка по скорости поток	a		()				
Настройки прибора		_	Тараметры калиб	бровки		Таблица измерений	скорости потока
Кол-во лучей 4	Смещ. лучей	0 K	Кол-во точек кал	ибровки	2		Vпот[1], м/с
Диаметр трубы, м		0,15 т	Гочек калибровкі	и в реверс	0	Ср.знач.	
Длина пути луча 1, м	0	,14575				Макс.	
Длина пути луча 2, м	0	.17482 H	Номер текущей т	очки	2 🌩	Ср.симм.	
Длина пути луча 3, м		0,1736 Г	<mark>Териод опроса</mark> , с	ек	5.0 🌩	Отн.СКО,%	
Длина пути луча 4, м	0	.14305 K	Кол-во измерени	й	60 🌩		
Длина пути луча 5, м			араметры этало	ца			
Длина пути луча 6, м			тал расхол(р) м	/ ³ /u	10.218		
Длина пути луча 7, м			тал скорость по	тока м/с	0.160617	_	
Длина пути луча 8, м				, no			
Считать калибр.	Записать ка	алибр.	Сброс	Начать нако	опление		
Таблица калибровки							
Луч 1	Луч 2	Луч 3	Луч 4				
► 1 Bx=0,000000 Выx=0,000000	Вх=0,000000 Вых=0,000000	Вх=0,000000 Вых=0,000000	0 Bx=0,000000 0 Bыx=0,000000				
2							
-							

Рисунок 3.3

4) Количество измерений рекомендуется задать не менее 60 с интервалом в 5 секунд.

5) После окончания измерений программа автоматически выполнит усреднение результатов с занесением в Таблицу калибровки. Для применения результатов калибровки нажать кнопку «Записать таблицу калибровки» (рисунок 3.4).

1) Перейти к следующей точке калибровки. С помощью калибровочного стенда задать эталонный расход и выдержать паузу для установления показаний расходомера.

2) В окне калибровки добавить точку калибровки и задать приращение номеру текущей точки (точка 3). Задать новое значение эталонного расхода и нажать кнопку «Начать накопление».

3) По завершению измерений записать таблицу калибровки.

4) Аналогичным образом выполнить калибровку по остальным точкам. Чтобы применить результаты записать таблицу калибровки.

Настрой	іки прибора		1.18	Параметры <mark>к</mark> алиб	ровки		Таблица измерений	скорости потока
Кол-во л	пучей 4	Смещ. лучей	0	Кол-во точек кал	ибровки	2 🌲		Vпот[1], м/с
Диамет	р трубы, м		0,15	Точек калибровки	и в реверс	0	• Ср.знач.	
Длина п	тути луча 1, м	0	.14575				Макс.	
Длина п	тути луча 2, м	0	.17482	Номер текущей то	очки	2 🌩	Ср.симм.	
Длина п	тути луча 3, м	1	0,1736	Период опроса, с	ек	5,0 🚔	0тн.СКО,%	
Длина п	тути луча 4, м	0	,14305	Кол-во измерений	ă	60 🌲		
Длина п	тути луча 5, м			Параметры этало	на			
Длина п	тути луча 6, м			Этал, расход(р). м	1 ³ /4	10,218		
Длина п	тути луча 7, м			Этал, скорость по	тока. м/с	0,160617		
Длина п	тути луча 8, м							
Считат	ь калибр.	Записать ка	алибр.	Сброс	Начать на	копление		
Таблица ка	алибровки		_					
	Луч 1	Луч 2	Пуч З	Луч 4				
	Вх=0,000000 Вых=0,000000	Вх=0,000000 Вых=0,000000	Вх=0,00000 Вых=0,00000	00 Вх=0,000000 00 Вых=0,000000				
	D 0 400 444	Bx=0 181122	Bx=0.18112	22 Bx=0,128444				

Рисунок 3.4

3.2.7 Калибровка в реверсивном потоке

Калибровка в реверсивном потоке аналогична калибровке в прямом потоке.

1) С помощью калибровочного стенда задать эталонный реверсивный поток и выдержать паузу для установления показаний расходомера.

2) В окне калибровки добавить точку калибровки в реверс, задать <u>отрицательный</u> эталонный расход и начать накопление измерительных данных (рисунок 3.5).

łастройки прибора —			Параметры калиб	бровки		Таблица измерений	скорости потока
Кол-во лучей 4	Смещ. лучей	0	Кол-во точек кал	ибровки	10 🌩		Vпот[1], м/с
Іиаметр трубы, м		0,15	Тоцек калибровки		1	• Ср.знач.	
Лина пути пуца 1 м		0 14575		и в ревере		Макс.	
		0 17482	Номер текушей т	очки	1	Миним.	-
цина пути луча 2, м		0,17402			E O A	Ср.симм.	
Длина пути луча 3, м		0,1736	период опроса, с	eĸ	5.0	Отн.СКО,%	
Длина пути луча 4, м		0,14305	Кол-во измерений	й	60 -	Добавляе	и точку в ревер
Длина пути луча 5, м			Параметры этало	на			
Длина пути луча 6, м			Этал. расход(р). м	ึ่ง″∕ч	-10,17		
Длина пути луча 7, м				тока м/с	-0 159862		
Длина пути луча 8, м			orun exeptert ne	710Ka, 1970			
						Задаем от	рицательный
Считать калибр.	Записать к	калибр.	Сброс	Начать н	акопление	эталонны	ирасход
Считать калибр.	Записать к	калибр.	Сброс	Начать н	акопление	эталонны	ирасход
Считать калибр.	Записать к	калибр.	Сброс	Начать н	акопление	эталонны	ирасход
Считать калибр. аблица калибровки Луч 1	Записать к	калибр. _{Луч} 3	Сброс	Начать н	акопление	эталонны	ирасход
Считать калибр. аблица калибровки Луч 1	Записать н	калибр. Луч 3	Сброс	Начать н	акопление	а в реверс	ирасход
Считать калибр. аблица калибровки Луч 1 1 8x=0.000000	Записать н Луч 2 Вх=0.000000	калибр. Луч 3 	Сброс Луч 4	Начать н Добав (выше	акопление аляется строк е опорной нул	а в реверс певой точки)	ирасход
Считать калибр. аблица калибровки Луч 1 2 Вх=0.000000 Вьх=0.000000	Записать н Луч 2 Вх=0,000000 Вью=0,000000	калибр. Луч 3 Вх=0,000 Вых=0,000	Сброс Луч 4 000 Вх=0,000000 Вьа<0,000000	Начать н Добав (выше	акопление аляется строк е опорной нул	а в реверс певой точки)	расход
Считать калибр. аблица калибровки Луч 1 2 Вх=0.000000 Вых=0.000000 3 Вх=0.128444 3 Вх=0.128444	Записать н Луч 2 Вх=0,000000 Вьа=0,000000 Вх=0,181122 Въсе0,181122	калибр. Луч 3 Вх=0,000 Вых=0,000 Вых=0,181 Вых=0,181	Сброс Луч 4 000 Вх=0,000000 Вьж=0,000000 122 Вх=0,128444 617 Вьж=0,128444	Начать н Добав (Выше	акопление	а в реверс певой точки)	расход
Считать калибр. аблица калибровки Луч 1 2 Вх=0,000000 3 Вх=0,128444 Вых=0,160617	Записать н Луч 2 Вх=0,000000 Вьх=0,000000 Вх=0,181122 Вьх=0,160617	калибр. Луч 3 Вх=0,000 Вых=0,000 Вх=0,181 Вых=0,160	Сброс Луч 4 000 Выс=0.000000 Вьос=0.000000 122 Вх=0.128444 617 Выс=0.160617 157 Пр. 0.360561	Начать н Добав (выша	акопление	а в реверс певой точки)	расход

3) После окончания измерений программа автоматически выполнит расчет калибровочных коэффициентов с занесением результатов калибровки в Таблицу калибровки. Для применения результатов необходимо нажать кнопку «Записать таблицу калибровки» (рисунок 3.6).

Hac	тройки прибора			Параметры калибр	овки		Таблица измер	ений скорости потока
Кол	-во лучей 4	Смещ. лучей	0	Кол-во точек калиб	ровки	10 🌲		Vпот[1], м/с
Циа	метр трубы, м		0,15	Точек калибровки в	B DeBeDC	1	• Ср.знач.	
Дли	на пути луча 1.	м	0,14575	re lok kashiopoolari	s honoho		Макс.	_
Тпи	на пути пуча 2	м	0 17482	Номер текущей точ	ки	1	Миним.	
Ппи	на пути пуца 3	M	0 1736	Период опроса, сек 5.0 🍧			Отн СКО	%
Дли	іна пути луча 3, іна пути луча 4,	M	0,14305	Кол-во измерений		60 🌲	C III.OIO,	
Цли	іна пути луча 5,	M			_			
1ли	іна пути луча 6.	м		Параметры эталона	• 	10.17		
Ппи	на пути пуца 7	M		этал. расход(р), м°/	ч	-10,17		
				HTAR CKODOCTL DOT	ove M/c	-0 159862		
Оли	на пути луча 8.	м		отал: скорость пот	UKa, M/C	0,100002		
Дли	іна пути луча 8,	M				0,100002		
Дли Счі	іна пути луча 8, итать калибр.	М	калибр.	Сброс	Начать на	копление		
Дли Счі Габлі	ина пути луча 8, итать калибр. ица калибровки	Записать	калибр.	Сброс	Начать на	копление		
Цли Счі Габлі	ина пути луча 8, итать калибр. ица калибровки Луч 1	М Записать	калибр. Луч 3	Сброс	Начать на	копление		
Счи	ина пути луча 8, итать калибр. ица калибровки Луч 1 1 Вж. – 0, 1316 Въж. – 0, 1598	м Записать Луч 2 94 Выс-0,175024 Выос-0,159862	калибр.	Сброс Луч 4 24 Вх=-0,131694 62 Вья=-0,159862	Начать на	копление		
Счи	ина пути луча 8, итать калибр. ица калибровки Луч 1 1 Вх=0.1316 Вох=0.1318 Вох=0.1318 2 Вьо=0.0000	М Записать Луч 2 94 Вк=0,175024 Вью=0,175024 Вью=0,175024 Вью=0,00000 Вк=0,000000 Вьо=0,000000	калибр.	Сброс Сброс	Начать на	копление		
Дли Счи Габлі	ина пути луча 8, итать калибр. ица калибровки Луч 1 1 Вж=0,1316 Вых=0,1316 Вых=0,1304 Вых=0,0000 Вых=0,1284 Вых=0,1284 Вых=0,1284	м Записать Луч 2 94 Вжс—0,175024 Вжс—0,159862 00 В×=0,000000 8x=0,000000 44 Вкс=0,181122 Вкс=0,160617	калибр. Луч 3 Вых-0,1750 Вых-0,1750 Вых-0,1000 Вых-0,0000 Вых-0,0000	Сброс Луч 4 24 Вх-0,131694 62 Вью-0,159862 000 Вых=0,000000 000 Вых=0,000000 222 Вх=0,128444 18 Вью-0,160617	Начать на	копление		

Рисунок 3.6

4) Перейти к следующей точке калибровки. С помощью калибровочного стенда задать реверсивный эталонный расход и выдержать паузу для установления показаний расходомера.

5) В окне калибровки добавить точку калибровки в реверс, указать номер текущей точки, задать новое значение отрицательного эталонного расхода, нажать «Начать накопление» и, по завершении, записать таблицу калибровки.

6) Аналогичным образом выполнить калибровку в остальных точках. Чтобы применить результаты необходимо записать таблицу калибровки.

7) Для контроля результатов калибровки рекомендуется построить график зависимости коэффициентов калибровки от скорости или расхода газа. График должен быть плавным без выбросов отдельных точек.

4 Поверка и тестирование

В расходомерах Turbo Flow UFG предусмотрены следующие типы поверок и тестирований:

- поверка по расходу;
- тест канала измерения скорости звука (Тест канала U);
- поверка сигнальных выходов (Тест выходных сигналов F, I);
- поверка канала измерения температуры;
- поверка канала измерения давления;
- тест вычислителя расхода (Поверка Тест рТZ).

Перечисленные виды поверок и тестов выполняются в соответствии с методикой поверки МП 56432-14.

Для выполнения поверки или тестирования необходимо при помощи программы XG Viewer подключиться к Расходомеру-счетчику газа «UFG» (BP-20) и в меню «Инструменты» выбрать необходимый тест (рисунок 4.1).

Рисунок 4.1

4.1 Поверка по расходу

Поверка УПР по расходу выполняется на поверочной установке. Измерения проводятся при следующих значениях объемного расхода газа Q_j : Q_{max} , $0,65Q_{max}$; $0,5Q_{max}$; $0,25Q_{max}$; $0,1Q_{max}$; $0,05Q_{max}$; $0,01Q_{max}$ и Q_{min} . В таблице 4.1 приведены вычисленные значения объемного расхода в м³/ч для поверки УПР различных диаметров.

				1 / 1	1	11	1				
ĺ	No	% от	Dn=50	Dn=80	Dn=100	Dn=150	Dn=200	Dn=250	Dn=300	Dn=400	Dn=500
	п.п	Qmax	MM	MM	MM	MM	MM	MM	MM	MM	MM
	1	Qmin	1,4	3,5	5,5	12	22	35	50	80	125
	2	1%	2,8	7	11	24	44	70	100	160	250
	3	5%	14	35	55	120	220	350	500	800	1250
ĺ	4	10%	28	70	110	240	440	700	1000	1600	2500
	5	25%	70	175	275	600	1100	1750	2500	4000	6250
	6	50%	140	350	550	1200	2200	3500	5000	8000	12500
	7	65%	182	455	715	1560	2860	4550	6500	10400	16250
	8	100%	280	700	1100	2400	4400	7000	10000	16000	25000

Таблица 4.1 Точки поверки для УПР различных лиаметров

Допустимое отклонение расходов, задаваемых эталонной установкой от вышеприведенных значений:

- 5 % - для Q_{max};

+ 10 % - для *Q_{min}*;

 \pm 10 % - для остальных расходов.

Поверка нереверсивного УПР осуществляется в прямом потоке. Поверка реверсивного УПР осуществляется в прямом и обратном потоках.

4.1.1 Поверка в прямом потоке

С помощью программы XG Viewer подключиться к Расходомеру-счетчику газа «UFG» (BP-20) и в меню «Инструменты» выбрать «Поверка по расходу».

При помощи поверочного стенда задать эталонный расход и выдержать паузу не менее 1 минуты для установления показаний расходомера.

В окне «Поверка по расходу» задать эталонный расход (рабочий) первой точки и параметры поверки: период опроса и количество измерений на точку (рисунок 4.2). Рекомендуется установить период опроса равный 5 секундам. Количество измерений на точку должно быть не менее 50.

Начать накопление измерительных данных.

Іоверка по расходу	8.0F	10.00		8. HB	1,001		accounty .			-	2 X
Параметры поверки	Ност	ойки прибо	pa			1	Таблица измер	ений Q, T, P			
Кол-во точек поверки	2 🗧 Кол-е	ю лучей	Смещ.	лучей				Qраб, м∛ч	QCT, M ⁵ /4	T, °C	Р, МПа
Намер техникей таки	1 Диан	ето трубы.	м				• Ср.знач.	3032.6	3018.32	23.51	0.16205
попер текущен точки							Макс.	3112,35	3097,93	23,85	0,10222
Период опроса, сек	5,0 💠 🛛 Пара	метры этал					Миним.	2985.38	2972.9	23.34	0.10202
Кол-ао измелений на точки	30 🕂 Этал	расход(р),	м ⁹ /ч	3000			Девиация	126,966	125,027	0,51	0,000/20
				_			1	3021.3	3008.23	23.45	0,10208
Сброс Начать нако	пление	сход при ст	андартны	сусловиях			2	3053,28	3039,69	23,43	0,10206
							3	3112.35	3097.93	23.43	0.10204
Таблица точек поеерки							4	3097, 19	3064,19	23,40	0,10208
Ореб ат. мº/ч	Ораб узпр. м ^а /ч	Откл %	Tcp. °C	Pco MEla	OTH CKO.%	N	5	3039.08	3026.09	23.40	0.10207
0000	3012.0	1.09	22.51	0 10205	0.95	20	6	2985, 38	2972,9	23,38	0,10207
- 1	0000.0	1.355	60.01	0.10200	4.44		7	3024.65	3010.44	23.38	0,10202
2						-	8	3008,97	2995,88	23,37	0,10205
							9	3000.02	2987.52	23.34	0,10205
							10	3041,48	3028,6	23,37	0,10207
								0000 54	0007 07	22.24	0.40000

Рисунок 4.2

По окончании измерений результаты поверки в данной точке автоматически занесутся в таблицу точек поверки.

Аналогичным образом выполнить измерения в остальных точках поверки.

Данные и результаты измерений внести в протокол поверки.

Результаты поверки считаются положительными, если полученные значения относительной погрешности расходомера при измерении объемного расхода находятся в допустимых пределах, указанных в техническом паспорте на прибор.

4.1.2 Поверка в обратном потоке.

Поверка в обратном потоке выполняется для реверсивных УПР. Данная поверка аналогична поверке в прямом потоке.

Для выполнения поверки необходимо установить корпус УПР в обратном направлении.

Необходимые значения эталонного расхода указывать со знаком «минус».

Результаты измерений внести в протокол поверки.

Результаты поверки реверсивных УПР считаются положительными, если полученные значения относительной погрешности расходомера при измерении объемного расхода, как в прямом, так и в обратных потоках находятся в допустимых пределах, указанных в техническом паспорте на прибор.

4.1.3 Коррекция по расходу

Коррекция по расходу выполняется с целью внесения поправок в показания расходомера в случае, если погрешность поверки в одной или нескольких контрольных точках превышает допустимую.

Коррекция по расходу осуществляется путем записи корректирующих расход умножающих коэффициентов в таблицу линеаризации по расходу.

Для работы с таблицей линеаризации по расходу необходимо посредством программы XG Viewer подключиться к измерителю скорости потока и в дереве параметров выбрать пункт «Линеаризация по расходу» (рисунок 4.3).

Исходные значения таблицы калибровки для УПР различных диаметров условного прохода приведены в таблице 4.2. Первые 8 коэффициентов используются для коррекции показаний УПР в обратном потоке (только для реверсивных расходомеров), вторая группа из 8 коэффициентов – для коррекции в прямом потоке.

Параметры Показания прибора Запись д	анных Трендь	Архивы Состав газа Осциллограммы	ы		
	Линеаризация п	о расходу (параметров: 33; исп. адреса 0x23C5-0x2405)		
10, 🗛 🏇 🥐		Название	Тип данных	Доступ	Текущее значение
L N - ¥ V	▶ 0x23C5	Количество точек линеаризации	UInt16	RW	16
	0x23C6	Расход 1	Float32	RW	-2000
Считывать при высоре Опрос 2 сек	0x23C8	Коэффициент 1	Float32	RW	0,5
⊕ BP-20 UFG Visual	0x23CA	Расход 2	Float32	RW	-1000
🖻 Измеритель скорости потока UFG	0x23CC	Коэффициент 2	Float32	RW	1
Данные	0x23CE	Расход 3	Float32	RW	-500
Диагностические данные	0x23D0	Коэффициент 3	Float32	RW	1
 Настройки АРУ 	0x23D2	Расход 4	Float32	RW	-100
🗏 Таблицы линеаризации	0x23D4	Коэффициент 4	Float32	RW	1
🖶 Линеаризация по скорости	0x23D6	Расход 5	Float 32	RW	-50
<mark>Линеаризация по расходу</mark> Настройки дублирования	0x23D8	Коэффициент 5	Float32	RW	1

Рисунок 4.3

Таблица 4.2 Исходные значения таблицы линеаризации для УПР различных диаметров

Диаметр, мм	50	80	100	150	200	250	300	400	500
Кол-во точек	16	16	16	16	16	16	16	16	16
Расход 1	-280	-700	-1100	-2400	-4400	-7000	-10000	-16000	-25000
Коэффициент 1	1	1	1	1	1	1	1	1	1
Расход 2	-182	-455	-715	-1560	-2860	-4550	-6500	-10400	-16250
Коэффициент 2	1	1	1	1	1	1	1	1	1
Расход 3	-140	-350	-550	-1200	-2200	-3500	-5000	-8000	-12500
Коэффициент 3	1	1	1	1	1	1	1	1	1
Расход 4	-70	-175	-275	-600	-1100	-1750	-2500	-4000	-6250
Коэффициент 4	1	1	1	1	1	1	1	1	1
Расход 5	-28	-70	-110	-240	-440	-700	-1000	-1600	-2500
Коэффициент 5	1	1	1	1	1	1	1	1	1
Расход 6	-14	-35	-55	-120	-220	-350	-500	-800	-1250
Коэффициент 6	1	1	1	1	1	1	1	1	1
Расход 7	-2,8	-7	-11	-24	-44	-70	-100	-160	-250
Коэффициент 7	1	1	1	1	1	1	1	1	1
Расход 8	-1,4	-3,5	-5,5	-12	-22	-35	-50	-80	-125
Коэффициент 8	1	1	1	1	1	1	1	1	1
Расход 9	1,4	3,5	5,5	12	22	35	50	80	125
Коэффициент 9	1	1	1	1	1	1	1	1	1
Расход 10	2,8	7	11	24	44	70	100	160	250
Коэффициент 10	1	1	1	1	1	1	1	1	1
Расход 11	14	35	55	120	220	350	500	800	1250
Коэффициент 11	1	1	1	1	1	1	1	1	1
Расход 12	28	70	110	240	440	700	1000	1600	2500
Коэффициент 12	1	1	1	1	1	1	1	1	1
Расход 13	70	175	275	600	1100	1750	2500	4000	6250
Коэффициент 13	1	1	1	1	1	1	1	1	1
Расход 14	140	350	550	1200	2200	3500	5000	8000	12500
Коэффициент 14	1	1	1	1	1	1	1	1	1
Расход 15	182	455	715	1560	2860	4550	6500	10400	16250
Коэффициент 15	1	1	1	1	1	1	1	1	1
Расход 16	280	700	1100	2400	4400	7000	10000	16000	25000
Коэффициент 16	1	1	1	1	1	1	1	1	1

4.2 Тест канала измерения скорости звука

Измеренная скорость звука является основным параметром для диагностирования метрологической исправности УПР.

Для выполнения тестирования необходимо при помощи программы XG Viewer подключиться к Расходомеру-счетчику газа «UFG» (BP-20) и в меню «Инструменты» выбрать «Тест канала U».

На рисунке 4.4 приведено окно тестирования канала скорости звука.

Принцип тестирования заключается в сравнении измеренной скорости звука с расчетным значением, которое вычисляется по известному составу, температуре и давлению газа.

В программе реализованы два метода расчета: УС GERG-91 и УС ВНИЦ СМВ.

Температуру и давление газа можно задавать либо вручную, либо использовать в вычислениях текущие измеренные значения. Выбор осуществляется установкой соответствующего флажка.

Тест считается успешно пройденным, если отклонение измеренной скорости звука от расчетного значения не превышает 0,1 %.

Тест канала U	24,70	0.000	8,21		40	×
Qст, м³/ч		0	Зав. номер	9008	87	
Qраб, м³/ч		0				
Vп, м/с		0,07	Калькулято	р скорости зву	/ка	
Vзв, м/с		341,13	Азот,% 0,8858		УС ВНИЦ СМ	ИВ
T, °C	T, °C 24,72		CO2,%	0.0668	Метан,%	88,2974
Р, МПа	Р, МПа 0,320		,		Этан,%	5,6
🗆 Использ	Использовать в вычислениях Vзв		T,°C	-3.15	Пропан,%	2
V:	зв,м/с	Vпот,м/с	P, M⊓a	2.001	н-Бутан,%	0
1	341,2579	0,06076731		01	и-Бутан,%	0,1
2	341,0475	0,06984463	JC GERG-91		H2S,%	3,05
			Плотн.,кг	/M ³ 0,6799	Сумма,%	100,0000
				0,9521	Ксж	0,9396
			Vзв,м/с	414,998	Vзв,м/с	388,770

Рисунок 4.4

4.3 Тест сигнальных выходов

4.3.1 Целью проверки является определение погрешностей УПР при преобразовании значения расхода газа в токовый и частотный сигналы.

Погрешности определяют согласно методики поверки МП 56432-14 при трех значениях расхода в рабочих условиях в точках Q_{max} , $0.1Q_{max}$ и Q_{min} .

4.3.2 Для доступа к разъемам выходных сигналов УПР необходимо открутить заднюю крышку корпуса ВР-20.

Разъемы XA2 и XA3 выходных сигналов расположены на плате внешних подключений (рисунок 4.5). В таблице 4.3 приведено назначение контактов разъемов выходных сигналов.

Рисунок 4.5 Расположение разъемов на плате внешних подключений

№ контакта	Обозначение	Назначение
XA2-3	-IMP2	Импульсный выход 2
XA2-4	+IMP2	Импульсный выход 2
XA3-1	+I	Выход 4-20 мА
XA3-2	-I	Выход 4-20 мА
XA3-3	+IMP1	Импульсный выход 1
XA3-4	-IMP1	Импульсный выход 1

Таблица 4.3 Назначение контактов разъемов выходных сигналов

4.3.3 Проверка токового выхода

К токовому выходу платы внешних подключений (контакты 1 и 2 разъема XA3 рисунок 4.5) подключить вольтметр универсальный в режиме измерения тока и источник питания постоянного тока напряжением от 12 до 24 В (рисунок 4.6).

Рисунок 4.6 Схема подключения приборов для проверки токового выхода

В программе XG Viewer: Параметры – BP-20 UFG Viewer – Общие настройки выбрать Регистр управления и в открывшемся окне снять галочку с токового выхода, переключив его на рабочие условия (рисунок 4.7).

Изменение значения	
Регистр управления	
🗹 вкл. ведение архива	
🗹 вкл. избыточный датчик давления	
🔲 частотный выход 1: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям	
🔲 импульсный выход 1: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям	
🔲 частотный выход 2: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям	
🔲 импульсный выход 2: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям	
🔲 Токовый выход: ВЫКЛ - по рабочим условиям, ВКЛ - по стандартным условиям	
Вкл. импульсный выход вместо частотного	
Вкл. дублирование импульсного выхода	
🔲 вкл. ведение объема часового архива в м [®]	
🔲 Выход на http	
🔲 вкл. bluetooth при старте	
🔲 вкл. GSM при старте	
🔲 вкл. тест csd	Ŧ
Отмена Записать Записать позже	

Рисунок 4.7

Определить расчетные значения тока для трех точек расхода (Q_{max} , $0.1Q_{max}$ и Q_{min}) по формуле:

$$I_{\text{pacy}} = \left(\left(I_{max} - I_0 \right) \cdot \frac{Q_{\text{MSM}}}{Q_{max}} \right) + I_0, \tag{4.1}$$

Turbo Flow UFG-F

Руководство по эксплуатации

где I_{max} и Q_{max} – максимальные значения тока (мА) и расхода (м³/ч); I_0 – значение тока, соответствующее нулевому значению расхода.

В программе XG Viewer в меню «Инструменты» выбрать «Тест выходных сигналов F, I».

В открывшемся окне включить режим эмуляции расхода и задать первое отладочное значение расхода Q_{max} .

Измерить ток токового выхода.

Повторить действия для значений расхода $0.1Q_{max}$ и Q_{min} .

Вычислить приведенную погрешность по токовому выходу в каждой точке расхода по формуле:

$$\gamma_I = \left(\frac{I_{\text{HSM}} - I_{\text{pact}}}{I_{max}}\right) \cdot 100\%. \tag{4.2}$$

Внести результаты в протокол поверки токового выхода.

Результаты поверки считаются положительными, если значения приведенной погрешности преобразования значений расхода газа в токовый сигнал γ_1 находятся в пределах ±0,1 %.

4.3.4 Поверка частотных выходов.

Расходомер содержит 2 независимых частотных выхода функционально связанных с прямым и обратным расходами.

В программе XG Viewer: Параметры – BP-20 UFG Viewer – Общие настройки выбрать Регистр управления и в открывшемся окне снять галочку с частотного выхода 1, переключив его на рабочие условия (рисунок УПР 4.8).

Определить расчетные значения частоты для трех значений расхода (Q_{max} , $0.1Q_{max}$ и Q_{min}) по формуле:

$$F_{\text{pacy}} = F_{max} \cdot \frac{Q_{\text{HSM}}}{Q_{max}},\tag{4.3}$$

где F_{max} и Q_{max} – максимальные значения частоты (Гц) и расхода (м³/ч). Данные значения внесены в паспорт расходомера.

Рисунок 4.8

К частотному выходу 1 платы внешних подключений (контакты 3 и 4 разъема XA3) подключить частотомер и/или осциллограф и источник питания постоянного тока напряжением от 3,7 до 24 В через нагрузочный резистор R (рисунок 4.9). Сопротивление резистора R выбрать таким образом, чтобы ток в измерительной цепи I=E/R находился в пределах от 1 до 10 мА.

В меню «Инструменты» – «Тест выходных сигналов F, I» задать в качестве отладочного значения рабочего расхода минимальный расход Q_{min} .

Рисунок 4.9 Схема подключения приборов для проверки частотных выходов

Измерить частоту сигнала на выходе частотного выхода. Вычислить относительную погрешность расходомера по частотному выходу по формуле:

$$\delta_F = \left(\frac{F_{\text{HBM}} - F_{\text{pacy}}}{F_{\text{pacy}}}\right) \cdot 100\%. \tag{4.4}$$

Повторить описанные выше действия для значения расхода 0,1 Q_{max} и Q_{max}.

Полученные результаты внести в протокол поверки частотных выходов.

Результаты проверки считаются положительными, если значения относительной погрешности частотного выхода расходомера δ_F находятся в пределах ±0,1 %.

Для поверки частотного выхода 2 подключиться к контактам 4 и 3 разъема XA2 и повторить описанные выше действия, задавая отрицательные значения отладочного расхода.

4.3.5 Проверка импульсных выходов

Расходомер содержит 2 независимых импульсных выхода, функционально связанных с прямым и обратным расходами. Конструктивно импульсные выходы объединены с частотными. Переключение режима работы частотный/импульсный осуществляется программно через регистр управления.

В программе XG Viewer: Параметры – BP-20 UFG Viewer – Общие настройки выбрать Регистр управления и в открывшемся окне установить галочки для включения импульсного выхода вместо частотного.

Определить расчетные значения периода следования импульсов для трех значений расхода $(Q_{max}, 0.1Q_{max} \bowtie Q_{min})$ по формуле:

$$T_{\text{pacy}} = \frac{p}{Q} \cdot 3600, \tag{4.5}$$

где P – вес импульса (м³/имп).

Вес импульса *P* является паспортным значением и задается в Настройках диапазонов BP-20. Как правило вес импульса *P*=1 м³/имп.

В окне «Тест выходных сигналов» ввести первое отладочное значение рабочего расхода равное Q_{max} .

Измерить период следования импульсов на выходе импульсного выхода.

Повторить действия для значений расхода 0.1Q_{max} и Q_{min}.

Вычислить относительную погрешность расходомера по импульсному выходу в каждой точке расхода по формуле:

$$\delta_T = \left(\frac{T_{\text{HBM}} - T_{\text{pacy}}}{T_{\text{pacy}}}\right) \cdot 100\%. \tag{4.6}$$

Turbo Flow UFG-F

Внести результаты в протокол поверки импульсных выходов.

Результаты проверки считаются положительными, если значения относительной погрешности импульсного выхода расходомера δ_T находятся в пределах ±0,1 %.

4.4 Поверка канала измерения температуры

В программе XG Viewer подключиться к Расходомеру-счетчику газа «UFG» (BP-20) и в меню «Инструменты» выбрать «Поверка канала Т» (рисунок 4.10).

В соответствии с методикой МП 56432-14 поверка осуществляется в трех точках шкалы при температурах T_{min} , T=0 ⁰С и T_{max} .

Задать период опроса равный 5 секундам и количество измерений на точку не менее 10.

При помощи термостата задать T=0 °C.

Начать накопление измерительных данных.

По окончании измерений программа автоматически рассчитает среднее значение температуры T_{ufg} и поместит результат в таблицу точек поверки.

Задать эталонную температуру $T_{.эm}$ и получить отклонение результата измерений от эталона.

Повторить измерения для точек с температурами T_{min} и T_{max} .

Внести результаты в протокол поверки канала температуры. Поверка считается успешно пройденной, если абсолютная погрешность

Поверка считается успешно пройденной, если абсолютная погрешность измерений температуры находиться в пределах $\pm (0,15+0,002 \cdot |t|)$ ⁰C.

iupuni	етры поверки					Ta	блица <mark>из</mark> мерений	і температуры
Кол- <mark>в</mark> о	точек <mark>по</mark> верки	2 - [Териод опроса,	сек	5.0 🌩			T, °C
Номер	текущей точки	2			10 🚔		Ср.знач.	25,380
				Макс.	25,420			
	05		1				Миним.	25,34
	Сорос пачать накопление						Девиация	0,08
r - C							1	25,41
аолиц	ца точек поверкі	1					2	25,42
	Т.эт, °С	Tufg, °C	Откл.,°С	Отн.СКО,%	N		3	25,41
1	25.3	25,38	0,0800	0,11	10		4	25,37
2							5	25,36
							6	25,34
							7	25,34
							8	25,37
							9	25,37
						•	10	25,36

Рисунок 4.10 Окно поверки канала температуры

4.5 Поверка канала измерения давления

В соответствии с методикой МП 56432-14 поверка осуществляется в трех точках шкалы: P1=0,25*P*_{max};

P2=(P1+P3)/2;

РЗ=*Р_{тах}*, где *Р_{тах}* – верхний предел измерений (ВПИ) датчика давления.

Допустимое отклонение значений давления, поданного на датчик давления, от расчетного значения не более чем на $\pm 0.05 P_{max}$ (5% ВПИ).

В программе XG Viewer подключиться к Расходомеру-счетчику газа «UFG» (BP-20) и в меню «Инструменты» выбрать «Поверка канала Р» (рисунок 4.11).

Задать период опроса равный 5 секундам и количество измерений на точку не менее 10.

При помощи калибратора давления задать Р=Р1 МПа.

Начать накопление измерительных данных.

По окончании измерений программа автоматически рассчитает среднее значение давления P_{ufg} и поместит результат в таблицу точек поверки.

Повторить измерения для точек с P=P2 и P=P3.

Внести результаты в протокол поверки канала давления.

Результаты поверки считаются положительными, если значение относительной погрешности при измерении давления находиться в пределах ±0,25%.

Параме	етры поверки			-	_	Таблица измерени	й давления
Кол-во точек поверки 2 💭 По Номер текущей точки 1 🚔 📈			ериод опроса,	сек	5,0 🌲		P, M∏a
					10	Ср.знач.	0,102
полор	текущенточки	K	ол-во измерен	ии на точку		Макс.	0,102
						Миним.	0,1020
Сброс			Нача	ть накопление		Девиация	0,0001
			<u></u>			1	0,1020
Таблиц	а точек поверк	И				2	0,1021
	Рэт, МПа	Pufg, M∏a	Откл.,МПа	Отн.СКО,%	N	3	0,1021
1	0,10230	0,102062	-0,0002	0,02	10	4	0,102
2						5	0,102
		3				6	0,1021
						7	0,1020
						8	0,1021
						9	0,1021
							0 1021

Рисунок 4.11 Окно поверки канала давления

4.6 Тест вычислителя расхода (Поверка – Тест рТZ)

Данный тест предназначен для проверки правильности приведения измеренного рабочего расхода газа к стандартным условиям.

Для выполнения тестирования необходимо с помощью программы XG Viewer подключиться к Расходомеру-счетчику газа «UFG» (BP-20) и в меню «Инструменты» выбрать «Поверка – Тест pTZ» (рисунок 4.14).

Задать метод расчета и компонентный состав газа.

Включить режим эмуляции рабочего расхода Q_{pab} , температуры T и давления P.

Задать отладочные значения Q_{pab} , T и P.

Нажать кнопку «Пуск».

В результате получим измеренное значение стандартного расхода Q_{cu} , расчетное значение стандартного расхода Q_{cp} и относительную погрешность ∂Q_c .

Тест считается успешно пройденным, если относительная погрешность приведения рабочего расхода к стандартным условиям не превышает 0,02 %.

оверка - Тест рТZ	And and	-	E
Расчёт Ксж			Режим эмуляции Qраб, Т, Р
Метод расчёта GERG-91 •			Отладочное значение рабочего расхода, м³/ч 10 ВКЛ
	Записать Сч	читать	Отладочное значение температуры, °С 16,85 ВЫКЛ
Состав газа			Отладочное значение 3,997 Задать
Компонент	Значение	Ед.изм.	
Азот	0,8858	%	Управление замерами
Диоксид углерода	0,0668	%	
Плотность	0,6799	кг/м²	Время изм.,сек 30 ПУСК СТОП
			Оси 430,525 Оср 430,525 БОС,% 0.000 Объём, м [®]

Рисунок 4.12

5 Техническое обслуживание

5.1 Общие указания

5.1.1 Техническое обслуживание (ТО) является составной частью эксплуатации расходомера и направлено на поддержание его в исправном состоянии и постоянной готовности к применению по назначению.

5.1.2 Виды ТО расходомера:

- контроль технического состояния с установленной периодичностью;

- ТО перед проведением периодической поверки.

5.1.3 При ТО должна быть обеспечена безопасность персонала. Условия работы, срочность ее выполнения и другие причины не могут служить основанием для нарушения мер безопасности.

5.1.4 Ответственность за надлежащее состояние и исправность узлов учета газа, а также за их своевременную поверку несут владельцы узлов учета согласно Правилам учёта газа, Кодексу об административных правонарушениях.

5.2 Порядок проведения ТО и ремонта

5.2.1 ТО расходомера проводится владельцем узла учета газа, на месте эксплуатации расходомера. Рекомендуемая периодичность ТО – 1 раз в три месяц. ТО включает проверку:

сохранности пломб;

проверка показаний расходомера;

- исправности работы составных частей прибора;

- надежности крепления составных частей прибора и заземляющего болтового соединения;

— отсутствия вмятин и видимых механических повреждений, а также пыли и грязи на составных частях расходомера;

- индикации измеряемых параметров;

- соответствия текущей даты и времени;

- проверка герметичности наружных фланцев;

— очистка от загрязнений участка трубопровода, на котором установлен ультразвуковой расходомер;

- осмотр уплотнений расходомера.

5.2.2 ТО перед проведением периодической поверки выполняется предприятиемизготовителем или организацией, имеющей разрешение предприятия-изготовителя, и включает в себя комплекс мероприятий по детальной диагностике расходомера, очистке ПР от загрязнений, регулировке электрических параметров, обновлению программного обеспечения, замене АКБ. Замена АКБ производится раз в 3 года перед проведением периодической поверки.

5.2.3 Все неисправности, выявленные в процессе контроля технического состояния, должны быть устранены. Запрещается выполнять последующие операции до устранения обнаруженных неисправностей.

5.2.4 Приборы с не устраненными неисправностями бракуют и направляют в ремонт.

5.3 Возможные неисправности и методы их устранения

5.3.1 Неисправности расходомера-счетчика, способ их устранения и методы их устранения приведены в таблице 5.1.

Таблица 5.1

Неисправность	Причина неисправности	Метод устранения неисправности	Примечание
Отсутствует индикация	Обрыв питающего провода	Проверить сопротивление питающего провода. Проверить питающее напряжение	
Отсутствует связь по интерфейсу связи	Обрыв или замыкание сигнального провода	Проверить сопротивление сигнального провода. Проверить надежность разъемных соединений	
Отсутствуют сигналы импульсного выхода	Обрыв или замыкание сигнального провода	Проверить сопротивление сигнального провода. Проверить надежность разъемных соединений	
Отсутствуют или неверны показания давления	Неисправен датчик давления	Проверить работу датчика давления и его соединительных линий	Провести поверку после ремонта
Отсутствуют или неверны показания температуры	Неисправен датчик температуры	Проверить работу датчика температуры и его соединительных линий	Провести поверку после ремонта

5.4 Влияние акустической помехи на результат измерений

5.4.1 В общем случае акустические помехи (шумы) в трубопроводе создаются различными источниками: насосами, компрессорами, соплами, задвижками, клапанами регулирования расхода и давления и т.п.

5.4.2 В случае, если амплитуда помехи превысит уровень компарирования после момента разрешения измерений (рисунок 5.1), она будет воспринята системой как ложный информационный импульс. При этом однозначно сработает система самодиагностики по критерию «отклонение измеренной скорости звука луча от средней свыше установленной границы (5 %) либо по критерию «отношение сигнал-шум менее критического значения (менее 15 дБ)». При этом система самодиагностики сформирует сигнал аварии луча «НЕНОРМА» и луч будет отключен.

Руководство по эксплуатации

5.4.3 Важно понимать, что изменение в самом отношении сигнала к шуму не является показателем того, что точность счетчика находится под угрозой, это указывает на то, что под угрозой возможность обнаружения (т.е. распознавания) импульсов. Если импульсы невозможно распознать, измерение прекращается!

5.4.4 Рекомендации по борьбе с шумом

В основном действуют следующие рекомендации:

- ультразвуковые расходомеры должны устанавливаться до регулирующих приборов;

 между расходомером и источником шума должны устанавливаться шумопоглащающие элементы (тройники, сепараторы и т.д.);

– уменьшить, если позволяет уровень полезного сигнала, идеальную амплитуду АРУ, что приведет к уменьшению коэффициента усиления и уровня помехи. Однако при этом следует понимать, что так же упадет амплитуда информационного импульса. Поэтому, необходимо проследить, чтобы амплитуда информационного импульса оставалась достаточной и значительно превышала уровень компарирования.

Для изменения идеальной амплитуды АРУ необходимо посредством АРМ подключиться к измерителю скорости потока UFG и выполнить следующие действия:

- в меню «Инструменты» выбрать «Управление мостом ВР-20» и включить мост;

- в меню «Инструменты» выбрать «Первичная настройка»;

- в открывшемся окне (рисунок 5.2) ввести новое значение идеальной амплитуды АРУ и нажать кнопку «Записать».

Первичная настройка УЗПР				2 ×					
Общие настройки Настройка АРУ									
Зав. номер 123456	Диаметр трубы, м	0,15	Адрес 16	Загрузить из файла					
Кол-во лучей 4	учей 0	Идеальная амплиту,	да АРУ 200	Сохранить в файл					
Частота измерений, Гц 10.00 💭 Запас паузы, % (0-70) 10 💭 Макс. время паузы 12,50 С									
Стартовый индекс коэфф. АРУ	Стартовый индекс коэфф. АРУ 60 🐑 Размер выборки для определ. уровня помехи 300 👘								
	Луч 1	Луч 2	Луч З	Луч 4					
 Длины путей лучей, м 	0,15	0,15	0,15	0,15					
Время паузы перед измерением лучей по потоку, мс	11,24	11,24	11,24	11,24					
Время паузы перед измерением лучей против потока, мс	11,24	11,24	11,24	11,24					
Минимальный Delval по потоку	100	100	100	100					
Минимальный Delval против потока	100	100	100	100					
Начало окна сканирования АРУ	400	400	400	400					
Параметры сохранены									

Рисунок 5.2

6 Транспортирование и хранение

6.1 Общие требования к транспортированию расходомера должны соответствовать ГОСТ Р 52931-2008.

6.2 Упакованные компоненты расходомера должны транспортироваться в закрытых транспортных средствах всеми видами транспорта, кроме морского, в том числе и воздушным, в отапливаемых герметизированных отсеках, в соответствии с правилами перевозок грузов, действующими на каждом виде транспорта.

6.3 Условия транспортирования в части воздействия климатических факторов должны соответствовать группе условий 5 (ОЖ4) по ГОСТ 15150-69 – для крытых транспортных средств.

6.4 Условия транспортирования в части механических воздействий должны соответствовать группе № 2 по ГОСТ Р 52931-2008.

6.5 Упакованные компоненты расходомера должны храниться в складских помещениях грузоотправителя и (или) грузополучателя, обеспечивающих сохранность изделий от механических повреждений, загрязнения и воздействия агрессивных сред, в условиях хранения 3 по ГОСТ 15150-69.

6.6 Допускается хранение компонентов расходомера в транспортной таре до 6 месяцев. При хранении более 6 месяцев компоненты расходомера должны быть освобождены от транспортной тары и храниться в условиях хранения 1 по ГОСТ 15150-69. Общие требования к хранению расходомера в отапливаемом хранилище по ГОСТ Р 52931-2008.

6.7 Эксплуатационная и товаросопроводительная документация вкладываются в полиэтиленовый пакет и укладываются в упаковочную тару.

7 Утилизация

7.1 Все материалы и комплектующие изделия, использованные при изготовлении расходомера, как при эксплуатации в течение срока службы, так и по истечении ресурса, не представляют опасности для здоровья человека, производственных, складских помещений и окружающей среды.

7.2 Утилизация вышедших из строя составных частей расходомера может производиться любым доступным потребителю способом.

Приложение А

14

13

Пример записи расходомеров-счетчиков газа ультразвуковых Turbo Flow UFG - F при заказе и в технической документации

2 78 3 45 6 9 10 11 12

- 1) Номинальный размер:
 - 050...500 Dn, мм
- 2) Исполнение корпуса УПР:

D – специальный корпус с установленными пъезоакустическими преобразователями;

DR – специальный корпус с установленными пъезоакустическими преобразователями, реверсивное исполнение; V – участок измерительного трубопровода с врезными пъезоакустическими преобразователями;

VR – участок измерительного трубопровода с врезными пъезоакустическими преобразователями, реверсивное

исполнение.

С - специальный корпус с установленными пъезоакустическими преобразователями, взамен ротационных счетчиков газа;

CR - специальный корпус с установленными пъезоакустическими преобразователями, реверсивное исполнение, взамен ротационных счетчиков газа;

дублирование средств измерений согласно СТО Газпром 5-37-2011: 3)

1

dA - дублирующие СИ температуры, давления, расхода и вычислительные устройства;

dБ - дублирующие СИ температуры, давления и вычислительные устройства;

4) Конфигурация лучей:

- 1 1 луч;
- 2-2 луча;
- 4-4 луча;
- 6-6 лучей;
- 8-8 лучей.

<u>5) Класс точности УП</u>Р:

- A 0,5/0,3 %;
- B 0.5/0.5 %;
- B 1.0/1.0 %:
- $\Gamma 2.0/1.0$ %.

6) Тип присоединительных фланцев по давлению (бар):

РN016 - по ГОСТ 12820-80 тип 2, ряд 2; (для исполнений С и СК по ГОСТ 12820-80 тип 1, ряд 2) РN063 - по ГОСТ 12821-80 тип 2, ряд 2;

РN100 - по ГОСТ 12821-80 тип 2, ряд 2;

РNXXX – другой (AN150, AN400, AN600 исполнение фланцев по стандарту ASME B16.5-2003).

7) Исполнение по диапазону температур измеряемой среды:

М – от минус 30 °С до плюс 70 °С;

X - от минус 50 °C до плюс 70 °C.

- 8) Материал корпуса:
 - 1 углеродистая сталь;
 - 2-нержавеющая сталь;
 - 3 низкотемпературная углеродистая сталь;
 - 4 дуплексная сталь;
 - 5 алюминиевый сплав Д16Т.
- 9) Исполнения:

СО – УПР и ЭБ;

С1ТР – УПР, ЭБ, преобразователи температуры и давления, ВР встроен в ЭБ;

С2ТР – УПР, ЭБ, преобразователи температуры и давления, ВР вынесен в РШ;

СЗТР – УПР, ЭБ, преобразователи температуры и давления, вычислитель Расход-1;

С4 – УПР, ЭБ и корректор Суперфлоу-23.

10) Исполнение РШ с промышленным компьютером:

ПК – в комплекте;

- отсутствует.

11) Наличие модуля телеметрии:

Т – в комплекте;

- отсутствует.

12) Тип преобразователя давления:

ДИ – преобразователь избыточного давления;

ДА – преобразователь абсолютного давления.

13) Верхний предел измерений избыточного давления (ВПИ), МПа.

0.004 - 10.

14) Класс точности преобразователя давления:

- 0,075%;
- 0,1%;

0,15%;

0,25%;

0,5%.

Приложение Б

Рисунок Б.1.1 – Расходомер - счетчик газа ультразвуковой исполнение корпуса D, DR

- 1 электронный блок;
- 2 ультразвуковой преобразователь расхода;
- 3 крышка (кожух) приемопередатчика;
- 4 приемопередатчик (в зависимости от исполнения);
- 5 первичный преобразователь давления;
- 6 первичный преобразователь температуры.

Рисунок Б.1.2 - специальный корпус с установленными пъезоакустическими преобразователями;

Габлица 1	-0	Осповать	nazwenti	пасхоломе	na thu ku	ппуса D	DR n	пи поминальном	парпеции	16 KT/CA	1 ²
гаолица і	-c	ЛНОВНЫС	размеры	расходоме	ра тип ко	piryca D	$, DK \Pi$	ри номинальном	давлении	10 KI/CM	4

		Основные размеры, мм									
Условное обозначение	Dn	Н	L	В	D	D1	d/n, мм/шт	РN, кг/см ²	Масса, кг		
UFG-F-050-DX	50	340	600	275	160	125	18/4	16	82		
UFG-F-080-DX	80	370	600	320	195	160	18/8	16	92		
UFG-F-100-DX	100	370	600	325	215	180	18/8	16	90		
UFG-F-150-DX	150	460	450	370	280	240	22/8	16	85		
UFG-F-200-DX	200	490	600	420	335	295	22/12	16	115		
UFG-F-250-DX	250	570	750	480	405	355	26/12	16	175		
UFG-F-300-DX	300	610	900	470	460	410	26/12	16	220		
UFG-F-400-DX	400	710	1200	600	580	525	30/16	16	490		
UFG-F-500-DX	500	830	1500	750	710	650	33/20	16	980		

Таблица 2– Основные размеры расходомера тип корпуса D, DR при номинальном давлении 63 кг/см²

				Осно	овные р	азмерь	I, MM		
Условное обозначение	Dn	Н	L	В	D	D1	d/n, мм/шт	РN, кг/см ²	Масса, кг
UFG-F-050-DX	50	350	600	275	175	135	22/4	63	88
UFG-F-080-DX	80	370	800	320	210	170	22/8	63	98
UFG-F-100-DX	100	390	800	325	250	200	26/8	63	100
UFG-F-150-DX	150	470	750	370	340	280	33/8	63	135
UFG-F-200-DX	200	540	1000	420	405	345	33/12	63	185
UFG-F-250-DX	250	600	750	475	470	400	39/12	63	240
UFG-F-300-DX	300	645	900	530	530	460	39/16	63	320
UFG-F-400-DX	400	760	1200	670	670	585	45/16	63	670
UFG-F-500-DX	500	870	1500	800	800	705	52/20	63	1250

Таблица 3 – Основные размеры расходомера тип корпуса D, DR при номинальном давлении 100 кг/см²

				Осно	овные р	азмерь	I, MM		
Условное обозначение	Dn	Н	L	В	D	D1	d/n, мм/шт	РN, кг/см ²	Масса, кг
UFG-F-050-DX	50	350	600	275	195	145	26/4	100	92
UFG-F-080-DX	80	380	800	320	230	180	26/8	100	102
UFG-F-100-DX	100	400	800	325	265	210	30/8	100	112
UFG-F-150-DX	150	470	750	370	350	290	33/12	100	150
UFG-F-200-DX	200	560	1000	430	430	360	39/12	100	215
UFG-F-250-DX	250	620	1000	500	500	430	39/12	100	310
UFG-F-300-DX	300	670	900	585	585	500	45/16	100	435
UFG-F-400-DX	400	780	1200	715	715	620	52/16	100	850
UFG-F-500-DX	500	850	1500	750	750	685	33/28	100	1250

Рисунок Б.1.3 – Расходомер - счетчик газа ультразвуковой исполнение корпуса V, VR

- 1 электронный блок;
- 2 ультразвуковой преобразователь расхода;
- 3 крышка (кожух) приемопередатчика;
- 4 приемопередатчик (в зависимости от исполнения);
- 5 первичный преобразователь давления;
- 6 первичный преобразователь температуры.

Рисунок Б.1.4 – участок измерительного трубопровода с врезными пъезоакустическими преобразователями;

Условное обозначение	Основные размеры, мм									
	Dn	Н	L	В	D	D1	d/n, мм/шт	РN, кг/см ²	Масса, кг	
UFG-F-050-VX	50	340	600	275	160	125	18/4	16	35	
UFG-F-080-VX	80	370	600	320	195	160	18/8	16	37	
UFG-F-100-VX	100	370	600	325	215	180	18/8	16	41	
UFG-F-150-VX	150	460	600	370	280	240	22/8	16	53	
UFG-F-200-VX	200	490	600	420	335	295	22/12	16	58	
UFG-F-250-VX	250	570	750	475	405	355	26/12	16	95	
UFG-F-300-VX	300	610	900	470	460	410	26/12	16	130	
UFG-F-400-VX	400	710	1200	600	580	525	30/16	16	490	
UFG-F-500-VX	500	830	1500	750	710	650	33/20	16	980	

Таблица 5 – Основные размеры расходомера тип корпуса V, VR при номинальном давлении 63 ${\rm kr/cm}^2$

	Основные размеры, мм									
Условное обозначение	Dn	Н	L	В	D	D1	d/n, мм/шт	РN, кг/см ²	Масса, кг	
UFG-F-050-VX	50	350	600	275	175	135	22/4	63	41	
UFG-F-080-VX	80	370	800	320	210	170	22/8	63	43	
UFG-F-100-VX	100	390	600	325	250	200	26/8	63	52	
UFG-F-150-VX	150	470	750	370	340	280	33/8	63	63	
UFG-F-200-VX	200	540	1000	420	405	345	33/12	63	121	
UFG-F-250-VX	250	600	750	475	470	400	39/12	63	217	
UFG-F-300-VX	300	645	900	530	530	460	39/16	63	252	
UFG-F-400-VX	400	760	1200	670	670	585	45/16	63	670	
UFG-F-500-VX	500	870	1500	800	800	705	52/20	63	1250	

Таблица 6 – Основные размеры расходомера тип корпуса V, VR при номинальном давлении 100 кг/см 2

	Основные размеры, мм									
Условное обозначение	Dn	Н	L	В	D	D1	d/n, мм/шт	РN, кг/см ²	Масса, кг	
UFG-F-050-VX	50	350	600	275	195	145	26/4	100	44	
UFG-F-080-VX	80	380	800	320	230	180	26/8	100	46	
UFG-F-100-VX	100	400	600	325	265	210	30/8	100	60	
UFG-F-150-VX	150	470	750	370	350	290	33/12	100	78	
UFG-F-200-VX	200	560	1000	430	430	360	39/12	100	151	
UFG-F-250-VX	250	620	1250	500	500	430	39/12	100	285	
UFG-F-300-VX	300	670	900	585	585	500	45/16	100	372	
UFG-F-400-VX	400	780	1200	715	715	620	52/16	100	850	
UFG-F-500-VX	500	850	1500	750	750	685	33/28	100	1250	

Рисунок Б.1.5 – Расходомер - счетчик газа ультразвуковой исполнение корпуса C, CR

- 1 электронный блок;
- 2 ультразвуковой преобразователь расхода;
- 3 крышка (кожух) приемопередатчика;
- 4 приемопередатчик (в зависимости от исполнения);
- 5 первичный преобразователь давления;
- 6 первичный преобразователь температуры.

Рисунок Б.1.6 – участок измерительного трубопровода с врезными пъезоакустическими преобразователями;
Таблица 7 – Основные размеры расходомера тип корпуса C, CR при номинальном давлении 16 кг/см²

			O	сновные	размерь	I, MM		
Условное обозначение	Dn	Н	L	В	D1	d/n, мм/шт	РN, кг/см ²	Масса, кг
UFG-F-050-CX	50	340	171	320	125	M16/4	16	18
UFG-F-080-CX	80	350	171	330	160	M16/4	16	22
UFG-F-080-CX	80	350	241	330	160	M16/4	16	24
UFG-F-100-CX	100	370	241	350	180	M16/8	16	26
UFG-F-100-CX	100	370	260	350	180	M16/8	16	28
UFG-F-150-CX	150	450	260	420	240	M20/8	16	33

Рисунок Б.1.7 – Расходомер - счетчик газа ультразвуковой исполнение дублирование средств измерений согласно СТО Газпром 5-37-2011

Руководство по эксплуатации

Таблица 8 – Основные размер	ры расходомера	тип к	корпуса	V,	VR	c	дублированием	СИ	при
номинальном давлении 16 кг/см ²									

				Осно	овные р	азмерь	I, MM		
Условное обозначение	Dn	Н	L	В	D	D1	d/n, мм/шт	РN, кг/см ²	Масса, кг
UFG-F-050-VX- dX	50	390	600	275	160	125	18/4	16	35
UFG-F-080-VX- dX	80	420	600	320	195	160	18/8	16	37
UFG-F-100-VX- dX	100	420	600	325	215	180	18/8	16	41
UFG-F-150-VX- dX	150	510	600	370	280	240	22/8	16	53
UFG-F-200-VX- dX	200	540	600	420	335	295	22/12	16	58
UFG-F-250-VX- dX	250	620	750	475	405	355	26/12	16	95
UFG-F-300-VX- dX	300	660	900	470	460	410	26/12	16	130
UFG-F-400-VX- dX	400	760	1200	600	580	525	30/16	16	490
UFG-F-500-VX- dX	500	880	1500	750	710	650	33/20	16	980

Таблица 9 – Основные размеры расходомера тип корпуса V, VR с дублированием СИ при номинальном давлении 63 кг/см²

				Осно	овные р	азмерь	I, MM		
Условное обозначение	Dn	Н	L	В	D	D1	d/n, мм/шт	РN, кг/см ²	Масса, кг
UFG-F-050-VX- dX	50	400	600	275	175	135	22/4	63	41
UFG-F-080-VX- dX	80	420	800	320	210	170	22/8	63	43
UFG-F-100-VX- dX	100	440	600	325	250	200	26/8	63	52
UFG-F-150-VX- dX	150	520	750	370	340	280	33/8	63	63
UFG-F-200-VX- dX	200	590	1000	420	405	345	33/12	63	121
UFG-F-250-VX- dX	250	650	750	475	470	400	39/12	63	217
UFG-F-300-VX- dX	300	695	900	530	530	460	39/16	63	252
UFG-F-400-VX- dX	400	810	1200	670	670	585	45/16	63	670
UFG-F-500-VX- dX	500	920	1500	800	800	705	52/20	63	1250

Таблица 10 — Основные размеры расходомера тип корпуса V, VR с дублированием CИ при номинальном давлении 100 кг/см 2

				Осно	овные р	азмерь	I, MM		
Условное обозначение	Dn	Н	L	В	D	D1	d/n, мм/шт	РN, кг/см ²	Масса, кг
UFG-F-050-VX- dX	50	400	600	275	195	145	26/4	100	44
UFG-F-080-VX- dX	80	430	800	320	230	180	26/8	100	46
UFG-F-100-VX- dX	100	450	600	325	265	210	30/8	100	60
UFG-F-150-VX- dX	150	520	750	370	350	290	33/12	100	78
UFG-F-200-VX- dX	200	610	1000	430	430	360	39/12	100	151
UFG-F-250-VX- dX	250	670	1250	500	500	430	39/12	100	285
UFG-F-300-VX- dX	300	720	900	585	585	500	45/16	100	372
UFG-F-400-VX- dX	400	830	1200	715	715	620	52/16	100	850
UFG-F-500-VX- dX	500	900	1500	750	750	685	33/28	100	1250

Рисунок Б.2 – Внешний вид электронного блока

Таблица Б.1

Поз.	Наименование	Кол.	Примечание
1	Корпус РШ	1	
2	Клавиатура РШ	1	
3	Петля для крепления РШ на стену	2	
4	Разъем питания ~ 220 В	1	
5	Клемма заземления	1	
6	Разъем для подключения внешнего аккумулятора 12 В	1	
7	Выключатель питания 220 В	1	
8	Выключатель питания от аккумулятора 12 В	1	
9	Разъем для принтера	1	
10	Разъем для ПК	1	
11	Разъем для УПР	1	
12	Разъем для sim-карты	1	
13	Разъем для антенны	1	

Рисунок Б.3 – Внешний вид РШ

Таблица Б.2

Поз.	Наименование	Кол.	Примечание
1	Резистивный сенсорный экран ППК	1	
2	Замок для закрытия дверцы	1	
3	GSM антенна	1	
4	Разъем для подключения ЭБ	3	
5	Разъем Ethernet	2	
6	Разъем USB	2	
7	Внешняя антенна модема	1	
8	Разъем для подключения внешних устройств	2	
9	Выключатель сети 220 В	1	
10	Клемма заземления	1	
11	Индикатор наличия напряжения питания 220 В	1	

Рисунок Б.4 – Внешний вид ППК

Приложение В

(дополнительное)

Схема подключения расходомера

Рисунок В.1 – Схема подключения расходомера

Рисунок В.2 – Схема подключения УПР с ППК

	Таблица	B.3 –	Обозначение	разъемов
--	---------	-------	-------------	----------

№ контакта	Обозначение	Назначение
XA2-1	D	D
XA2-2	Резерв	Резерв
XA2-3	+IMP2	Частотно - импульсный выход 2
XA2-4	-IMP2	
XA3-1	+I	$\mathbf{P}_{\mathbf{W}} = \mathbf{A} \mathbf{P}_{\mathbf{W}} \mathbf{A} (\pi \mathbf{P}_{\mathbf{P}} \mathbf{P}_{\mathbf{W}} \mathbf{W})$
XA3-2	-I	Быход 4-20 мА (пассивныи).
XA3-3	+IMP1	
XA3-4	-IMP1	частотно - импульсный выход т
XA4-1	+U	
XA4-2	-U	Питание приоора
XA4-3	А	Hyman have DC 495
XA4-4	В	интерфеис КЗ-485

Рисунок В.3 – Вид на плату внешних подключений

Приложение Г

(дополнительное)

Схемы соединений УПР и РШ

Рисунок Г.1.1 – Схема распайки кабеля КММ 4×0,35

Рисунок Г.2 – Схема распайки кабеля КСПвЭП 8×2×0,4

Рисунок Г.3 – Схема подключений РШ и УПР (вид контактов со стороны пайки для кабелей на рис.Г.1 и Г.2)

Разъемы для подключения датчика давления и термосопротивления

Рисунок Г.4 – Вид со стороны пайки кабельного разъема для подключения датчика давления

Рисунок Г.5 – Вид со стороны пайки кабельного разъема для подключения термосопротивления

Приложение Д (справочное) Схемы монтажа расходомера

Dn, мм	50 (4 луча)					80				100	100			
	L1	(4 луча) состоит из дв) зух час	тей		(4 луча)			(4 луча)				
Рп, кг/см ²	L	L1	L2	L5	L	L1	L2	L5	L	L1	L2	L5		
16	600	500+500	250	100	600	1600	400	160	600	2000	500	200		
63	600	500+500	250	100	800	1600	400	160	600 (800)*	2000	500	200		
100	600	500+500	250	100	800	1600	400	160	600 (800) *	2000	500	200		
Dn, мм		150				200			250					
		(4 луча)			(4 луча)		(6 лучей)					
Pn, кг/см ²	L	L1	L2	L5	L L1 L2 L5			L	L1	L2	L5			
16	450	3000	750	300	600	4000	1000	400	750	5000	1250	500		
63	750	3000	750	300	1000	4000	1000	400	750	5000	1250	500		
100	750	3000	750	300	1000	4000	1000	400	1000	5000	1250	500		
Dn, мм		300				400				500				
		(6 лучеі	i)			(8 лучей	i)			(8 лучей)				
	L1	состоит из дв	ух час	гей	L1 (состоит из дв	ух час	гей	L1 coc	тоит из двух	частей	Í		
Pn, кг/см ²	L	L1	L2	L5	L	L1	L2	L5	L	L1	L2	L5		
16	900	3000+3000	1500	600	1200	4000+4000	2000	800	1500	5000+5000	2500	1000		
63	900	3000+3000	1500	600	1200	4000+4000	2000	800	1500	5000+5000	2500	1000		
100	900	3000+3000	1500	600	1200	4000+4000	2000	800	1500	5000+5000	2500	1000		

Рисунок Д.1 – Монтаж расходомера классов точности А (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %)

для Dn50-80 - 4Dn для Dn100-150 - 3Dn

Dn, мм			50)		80						
			(4 лу	ча)					(4 л	уча)		-
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16	600	500	200	250	6	100	600	800	320	400	10	160
63	600	500	200	250	6	100	600 (800)*	800	320	400	10	160
100	600	500	200	250	6	100	600 (800)*	800	320	400	10	160
Dn, мм			10	0					15	50		
		1	(4 лу	ча)		1		r	(4 л	уча)		1
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16	600	1000	300	500	12	200	450	1500	450	750	18	300
63	800	1000	300	500	12	200	750	1500	450	750	18	300
100	800	1000	300	500	12	200	750	1500	450	750	18	300
Dn, мм			20	0					25	50		
	(4 луча)								(6 лу	чей)		
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16	600	2000	400	1000	24	400	750	2500	500	1250	30	500
63	1000	2000	400	1000	24	400	750	2500	500	1250	30	500
100	1000	2000	400	1000	24	400	1000	2500	500	1250	30	500
Dn, мм			30	0					4()0		
			(6 луч	ней)					(8 лу	чей)		
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16	900	3000	600	1500	36	600	1200	4000	800	2000	48	800
63	900	3000	600	1500	36	600	1200	4000	800	2000	48	800
100	900	3000	600	1500	36	600	1200	4000	800	2000	48	800
Dn, мм			50	0								
			(8 луч	ней)								
Pn, кг/см ²	L	L1	L2	L3	L4	L5						
16	1500	5000	1000	2500	60	1000						
63	1500	5000	1000	2500	60	1000						
100	1500	5000	1000	2500	60	1000						

Рисунок Д.2 – Монтаж расходомера со струевыпрямителем со вставкой 2Dn классов точности А (0,5 % - 0,3 %)

Dn, мм			50					80			
			(4 луча)					(4 луч	a)		Γ
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 mi	n	L3	L5
16	600	500	100	250	100	600	800	160		400	160
63	600	500	100	250	100	600 (800)*	800	160		400	160
100	600	500	100	250	100	600 (800)*	800	160		400	160
Dn, мм			100					150			
	R		(4 луча)	1			-	(4 луч	a)		r
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L	L2 n	nin	L3	L5
16	600	1000	200	500	200	450	150	0 300	0	750	300
63	800	1000	200	500	200	750	150	0 300	0	750	300
100	800	1000	200	500	200	750	150	0 300	0	750	300
Dn, мм			200					250	•		
			(4 луча)	- 1			-	(6 луче	ей)		1
Pn, кг/см ²	L	L1	L2 mi	n L3	L5	L	L1	L2 min]	L3	L5
16	600	2000	400	1000	400	750	2500	500	1	250	500
63	1000	2000	400	1000	400	750	2500	500	1	250	500
100	1000	2000	400	1000	400	1000	2500	500	1	250	500
Dn, мм			300		•			400			
		((6 лучей)		-			(8 луче	ей)		-
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 min		L3	L5
16	900	3000	600	1500	600	1200	4000	800	2	000	800
63	900	3000	600	1500	600	1200	4000	800	2	000	800
100	900	3000	600	1500	600	1200	4000	800	2	000	800
Dn, мм			500								
		((8 лучей)		-						
Pn, кг/см ²	L	L1	L2 min	L3	L5						
16	1500	5000	1000	2500	1000						
63	1500	5000	1000	2500	1000						
100	1500	5000	1000	2500	1000						

Рисунок Д.3 – Монтаж расходомера классов точности А (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %) со струевыпрямителем без вставки 2Dn

Turbo Flow UFG-F

Dn, мм		50						80				
		1	(4 лу	ча)	n	1		r	(4 л	уча)		1
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16	600	250	200	200	6	100	600	400	320	320	10	160
63	600	250	200	200	6	100	600 (800)*	400	320	320	10	160
100	600	250	200	200	6	100	600 (800)*	400	320	320	10	160
Dn, мм			10	0					15	50		
		(4 луча)						(4 луча)				
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16	600	500	300	400	12	200	450	750	450	450	18	300
63	800	500	300	400	12	200	750	750	450	450	18	300
100	800	500	300	400	12	200	750	750	450	450	18	300
Dn, мм			20	0					25	50		
			(4 лу	ча)	1	1		1	(6 лу	чей)		
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16	600	1000	400	600	24	400	750	1250	500	750	30	500
63	1000	1000	400	600	24	400	750	1250	500	750	30	500
100	1000	1000	400	600	24	400	1000	1250	500	750	30	500
Dn, мм			30	0					4()0		
			(6 луч	ней)	1	1		1	(8 лу	чей)		
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16	900	1500	600	900	36	600	1200	2000	800	1200	48	800
63	900	1500	600	900	36	600	1200	2000	800	1200	48	800
100	900	1500	600	900	36	600	1200	2000	800	1200	48	800
Dn, мм			50	0								
			(8 луч	ней)	1	1		1	1			
Pn, кг/см ²	L	L1	L2	L3	L4	L5						
16	1500	2500	1000	1500	60	1000						
63	1500	2500	1000	1500	60	1000						
100	1500	2500	1000	1500	60	1000						

Рисунок Д.4 – Монтаж расходомера со струевыпрямителем укороченной длины со вставкой 2Dn классов точности А (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %) (при условии калибровки в сборе)

Dn, мм		50					80			
			(4 луча)		ſ		1	(4 луча)		
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 min	L3	L5
16	600	300	100	200	100	600	400	160	320	160
63	600	300	100	200	100	600 (800)*	400	160	320	160
100	600	300	100	200	100	600 (800)*	400	160	320	160
Dn, мм			100					150	•	
			(4 луча)		1		1	(4 луча)		
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 min	L3	L5
16	600	500	200	400	200	450	750	300	450	300
63	800	500	200	400	200	750	750	300	450	300
100	800	500	200	400	200	750	750	300	450	300
Dn, мм			200					250	•	
			(4 луча)		1	(6 лучей)				
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 min	n L3	L5
16	600	1000	400	600	400	750	1250	500	750	500
63	1000	1000	400	600	400	750	1250	500	750	500
100	1000	1000	400	600	400	1000	1250	500	750	500
Dn, мм			300	•				400	•	
		((6 лучей)				-	(8 лучей)	
Pn, кг/см ²	L	L1	L2 min	1 L3	L5	L	L1	L2 min	L3	L5
16	900	1500	600	900	600	1200	2000	800	1200	800
63	900	1500	600	900	600	1200	2000	800	1200	800
100	900	1500	600	900	600	1200	2000	800	1200	800
Dn, мм			500					·		
		((8 лучей)							
Pn, кг/см ²	L	L1	L2 min	L3	L5					
16	1500	2500	1000	1500	1000					
63	1500	2500	1000	1500	1000					
100	1500	2500	1000	1500	1000					

Рисунок Д.5 – Монтаж расходомера со струевыпрямителем укороченный без вставки 2Dn классов точности A (0,5 % - 0,3 %) и Б (0,5 % - 0,5%) (при условии калибровки в сборе)

Dn, мм		50				8	0			1()0	
		(4 л	уча)			(4 л	уча)			(4 л	уча)	
Pn, кг/см ²	L	L1	L3	L5	L	L1	L3	L5	L	L1	L3	L5
16	600	500	200	100	600	800	320	160	600	1000	400	200
63	600	500	250	100	800	800	320	160	600 (800)*	1000	400	200
100	600	500	250	100	800	800	320	160	600 (800)*	1000	400	200
Dn, мм		15	50			20	00			25	50	
	(4 луча)			(4 луча)			(6 лучей)					
$Pn, \kappa r/cm^2$	L	L1	L3	L5	L	L1	L3	L5	L	L1	L3	L5
16	600	1500	450	300	600	2000	600	400	750	2500	750	500
63	750	1500	450	300	1000	2000	600	400	750	2500	750	500
100	750	1500	450	300	1000	2000	600	400	1250	2500	750	500
Dn, мм		30	00			40	00			50	00	
		(6 лу	чей)			(8 лу	/чей)			(8 лу	чей)	
Pn, $\kappa \Gamma / c M^2$	L	L1	L3	L5	L	L1	L3	L5	L	L1	L3	L5
16	900	3000	900	600	1200	4000	1200	800	1500	5000	1500	1000
63	900	3000	900	600	1200	4000	1200	800	1500	5000	1500	1000
100	900	3000	900	600	1200	4000	1200	800	1500	5000	1500	1000

Рисунок Д.6 – Монтаж расходомера классов точности В (1,0 % - 1,0 %) и Г (1,0 % - 2,0 %)

Dn, мм		50					80			
			(4 луча)				(4 луч	a)	1
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 min	L3	L5
16	600	250	100	200	100	600	400	160	320	160
63	600	250	100	200	100	600 (800)*	400	160	320	160
100	600	250	100	200	100	600 (800)*	400	160	320	160
Dn, мм			100					150		
			(4 луча)				(4 луч	a)	
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 min	L3	L5
16	600	500	200	300	200	600	750	300	450	300
63	600	500	200	300	200	750	750	300	450	300
100	600	500	200	300	200	750	750	300	450	300
Dn, мм			200					250		
		-	(4 луча)				(6 луче	ей)	-
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 mi	n L3	L5
16	600	1000	400	600	400	750	1250	500	750	500
63	1000	1000	400	600	400	750	1250	500	750	500
100	1000	1000	400	600	400	1250	1250	500	750	500
Dn, мм			300					400		
		1	(6 лучей	í)				(8 луче	ей)	1
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 mi	n L3	L5
16	900	1500	600	900	600	1200	2000	800	1200	800
63	900	1500	600	900	600	1200	2000	800	1200	800
100	900	1500	600	900	600	1200	2000	800	1200	800
Dn, мм			500					•		
			(8 лучей	í)	1					
Pn, кг/см ²	L	L1	L2	L3	L5					
16	1500	2500	1000	1500	1000					
63	1500	2500	1000	1500	1000					
100	1500	2500	1000	1500	1000					

Рисунок Д.7 – Монтаж расходомера со струевыпрямителем без вставки 2Dn классов точности В (1,0 % - 1,0 %) и Г (1,0 % - 2,0 %)

(800)^{*}- длина корпуса типа D, DR

Turbo Flow UFG-F

Dn, мм		50						80					
			(4 лу	ча)	-				(4 л	уча)			
Pn, $\kappa \Gamma / c M^2$	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5	
16	600	250	200	200	6	100	600	400	320	320	10	160	
63	600	250	200	200	6	100	800	400	320	320	10	160	
100	600	250	200	200	6	100	800	400	320	320	10	160	
Dn, мм			100	0					15	50			
		r	(4 лу	ча)	r	1	(4 луча)						
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5	
16	600	500	300	400	12	200	600	750	450	450	18	300	
63	600 (800) *	500	300	400	12	200	750	750	450	450	18	300	
100	600 (800) *	500	300	400	12	200	750	750	450	450	18	300	
Dn, мм		200						250					
			(4 лу	ча)			(6 лучей)						
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5	
16	600	1000	400	600	24	400	750	1250	500	750	30	500	
63	1000	1000	400	600	24	400	750	1250	500	750	30	500	
100	1000	1000	400	600	24	400	1000	1250	500	750	30	500	
Dn, мм			300	0					4()0			
			(6 луч	ней)					(8 лу	чей)			
Pn, $\kappa \Gamma / c M^2$	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5	
16	900	1500	600	900	36	600	1200	2000	800	1200	48	800	
63	900	1500	600	900	36	600	1200	2000	800	1200	48	800	
100	900	1500	600	900	36	600	1200	2000	800	1200	48	800	
Dn, мм			500	0									
			(8 луч	ней)									
Pn, кг/см ²	L	L1	L2	L3	L4	L5							
16	1500	2500	1000	1500	60	1000							
63	1500	2500	1000	1500	60	1000							
100	1500	2500	1000	1500	60	1000							

Рисунок Д.8 – Монтаж расходомера со струевыпрямителем со вставкой 2Dn классов точности В (1,0 % - 1,0 %) и Г (1,0 % - 2,0 %)

Руководство по эксплуатации

Dn, мм		50			80			100	
		(4 луча)			(4 луча)			(4 луча)	
Pn, кг/см ²	L	L1	L5	L	L1	L5	L	L1	L5
16	600	1000	100	600	1600	160	600	2000	200
63	600	1000	100	800	1600	160	600 (800) *	2000	200
100	600	1000	100	800	1600	160	600 (800)*	2000	200
Dn, мм		150			200			250	
		(4 луча)		(4 луча)				(6 лучей)	
Pn, кг/см ²	L	L1	L5	L	L1	L5	L	L1	L5
16	450	3000	300	600	4000	400	750	5000	500
63	750	3000	300	1000	4000	400	750	5000	500
100	750	3000	300	1000	4000	400	1000	5000	500
Dn, мм		300			400			500	
		(6 лучей)			(8 лучей)			(8 лучей)	
	L1 co	стоит из двух	частей	L1 coc	тоит из двух ч	астей	L1 coc	тоит из двух ч	астей
Pn, кг/см ²	L	L1	L5	L	L1	L5	L	L1	L5
16	900	3000+3000	600	1200	4000+4000	800	1500	5000+5000	1000
63	900	3000+3000	600	1200	4000+4000	800	1500	5000+5000	1000
100	900	3000+3000	600	1200	4000+4000	800	1500	5000+5000	1000

Рисунок Д.9 – Монтаж реверсивного расходомера классов точности А (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %)

(800)^{*}- длина корпуса типа D, DR

Turbo Flow UFG-F

Dn, мм	50					80					
			(4 луча)					(4 луча)		1	
Pn, кг/см ²	L	L1	L2	L4	L5	L	L1	L2	L4	L5	
16	600	500	200	6	100	600	800	320	10	160	
63	600	500	300	6	100	600 (800)*	800	320	10	160	
100	600	500	300	6	100	600 (800)*	800	320	10	160	
Dn, мм			100		•			150			
			(4 луча)					(4 луча)		1	
Pn, кг/см ²	L	L1	L2	L4	L5	L	L1	L2	L4	L5	
16	600	1000	300	12	200	450	1500	450	18	300	
63	800	1000	300	12	200	750	1500	450	18	300	
100	800	1000	300	12	200	750	1500	450	18	300	
Dn, мм			200					250			
			(4 луча)	1		(6 лучей)					
Pn, кг/см ²	L	L1	L2	L4	L5	L	L1	L2	L4	L5	
16	600	2000	400	24	200	750	2500	500	30	250	
63	1000	2000	400	24	200	750	2500	500	30	250	
100	1000	2000	400	24	200	1000	2500	500	30	250	
Dn, мм			300					400			
			(6 лучей)					(8 лучей)	1	
Pn, кг/см ²	L	L1	L2	L4	L5	L	L1	L2	L4	L5	
16	900	3000	600	36	300	1200	4000	800	48	400	
63	900	3000	600	36	30	1200	4000	800	48	400	
100	900	3000	600	36	300	1200	4000	800	48	400	
Dn, мм			500								
			(8 лучей)	1						1	
Pn, кг/см ²	L	L1	L2	L4	L5						
16	1500	5000	1000	60	500						
63	1500	5000	1000	60	500						
100	1500	5000	1000	60	500						

Рисунок Д.10 – Монтаж реверсивного расходомера со струевыпрямителем со вставкой 2 Dn классов точности A (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %)

Dn, мм		5	50			8	80	
		(4 л	уча)	1		(4 J	іуча)	
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5
16	600	500	100	100	600	800	320	160
63	600	500	100	100	800	800	320	160
100	600	500	100	100	800	800	320	160
Dn, мм		1	00			1	50	
		(4 л	уча)	-		(4 J	іуча)	
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5
16	600	1000	200	200	450	1500	300	300
63	800	1000	200	200	750	1500	300	300
100	800	1000	200	200	750	1500	300	300
Dn, мм		2	00			2	50	
		(4 л	уча)		(6 л	учей)		
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5
16	600	2000	400	200	750	2500	500	500
63	1000	2000	400	200	750	2500	500	500
100	1000	2000	400	200	1000	2500	500	500
Dn, мм		3	00			4	00	
		(6 лу	учей)			(8 л	учей)	
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5
16	900	3000	600	600	1200	4000	800	800
63	900	3000	600	600	1200	4000	800	800
100	900	3000	600	600	1200	2000	800	800
Dn, мм		5	00					
		(8 лу	учей)					
Pn, кг/см ²	L	L1	L2 min	L5				
16	1500	5000	1000	1000				
63	1500	5000	1000	1000				
100	1500	5000	1000	1000				

Рисунок Д.11 – Монтаж реверсивного расходомера со струевыпрямителем без вставки 2 Dn классов точности A (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %)

Turbo Flow UFG-F

Dn, мм			50			80					
		((4 луча)		1		-1	(4 луча)	-1	1	
Pn, кг/см ²	L	L1	L2	L4	L5	L	L1	L2	L4	L5	
16	600	250	200	6	100	600	400	320	10	160	
63	600	250	200	6	100	800	400	320	10	160	
100	600	250	200	6	100	800	400	320	10	160	
Dn, мм			100					150			
	(4 луча)							(4 луча)			
Pn, кг/см ²	L	L1	L2	L4	L5	L	L1	L2	L4	L5	
16	600	500	300	12	150	450	750	420	18	200	
63	800	500	300	12	150	750	750	420	18	200	
100	800	500	300	12	150	750	750	420	18	200	
Dn, мм			200					250			
		((4 луча)			(6 лучей)					
Pn, кг/см ²	L	L1	L2	L4	L5	L	L1	L2	L4	L5	
16	600	1000	400	24	400	750	1250	500	30	500	
63	1000	1000	400	24	400	750	1250	500	30	500	
100	1000	1000	400	24	400	1000	1250	500	30	500	
Dn, мм			300					400			
		(6 лучей)					(8 лучей)		
Pn, кг/см ²	L	L1	L2	L4	L5	L	L1	L2	L4	L5	
16	900	1500	600	36	300	1200	2000	800	48	400	
63	900	1500	600	36	300	1200	2000	800	48	400	
100	900	1500	600	36	300	1200	2000	800	48	400	
Dn, мм			500								
		(8 лучей)								
Pn, кг/см ²	L	L1	L2	L4	L5						
16	1500	2500	1000	60	500						
63	1500	2500	1000	60	500						
100	1500	2500	1000	60	500						

Рисунок Д.12 – Монтаж реверсивного расходомера укороченной длины со струевыпрямителем со вставкой 2 Dn классов точности А (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %)

Dn, мм		5	0			8	30	
		(4 л	уча)			(4 л	іуча)	
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5
16	600	250	200	100	600	400	320	160
63	600	250	200	100	800	400	320	160
100	600	250	100	100	800	400	320	160
Dn, мм		10	00			1	50	
		(4 л	уча)			(4 л	іуча)	
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5
16	600	500	300	150	450	750	450	200
63	800	500	300	150	750	750	450	200
100	800	500	300	150	750	750	450	200
Dn, мм		20	00			2	50	
		(4 луча)				(6 л	учей)	
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5
16	600	1000	400	400	750	1250	500	500
63	1000	1000	400	400	750	1250	500	500
100	1000	1000	400	400	1000	1250	500	500
Dn, мм		30	00			4	00	
		(6 лу	/чей)			(8 л	учей)	
Pn, кг/см ²	\mathbf{L}	L1	L2 min	L5	L	L1	L2 min	L5
16	900	1500	600	300	1200	2000	800	400
63	900	1500	600	300	1200	2000	800	400
100	900	1500	600	300	1200	4000	800	400
Dn, мм		50	00					
		(8 лу	/чей)					
Pn, кг/см ²	L	L1	L2 min	L5				
16	1500	2500	1000	500				
63	1500	2500	1000	500				
100	1500	2500	1000	500				

Рисунок Д.13 – Монтаж реверсивного расходомера со струевыпрямителем со вставкой 2 Dn классов точности А (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %)

Dn, мм	50				80			100	
		(4 луча)			(4 луча)			(4 луча))
Pn, кг/см ²	L	L1	L5	L	L1	L5	L	L1	L5
16	600	500	100	600	800	160	600	1000	200
63	600	500	100	800	800	160	600	1000	200
100	600	500	100	800	800	160	600	1000	200
Dn, мм		150			200			250	
	(4 луча)				(4 луча)			(6 лучей	i)
Pn, кг/см ²	L	L1	L5	L	L1	L5	L	L1	L5
16	600	1500	300	600	2000	400	750	2500	500
63	750	1500	300	1000	2000	400	750	2500	500
100	750	1500	300	1000	2000	400	1000	2500	500
Dn, мм		300			400			500	
		(6 лучей)			(8 лучей))		(8 лучей	i)
Pn, кг/см ²	L	L1	L5	L	L1	L5	L	L1	L5
16	900	3000	600	1200	4000	800	1500	5000	1000
63	900	3000	600	1200	4000	800	1500	5000	1000
100	900	3000	600	1200	4000	800	1500	5000	1000

Рисунок Д.14 – Монтаж реверсивного расходомера классов точности В (1,0 % - 1,0 %) и Г (1,0 % - 2,0 %)

Dn, мм			50		80				
		(4	луча)			(4	луча)		
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5	
16	600	250	100	100	600	400	160	160	
63	600	250	100	100	800	400	160	160	
100	600	250	100	100	800	400	160	160	
Dn, мм			100	·			150		
		(4 луча)				(4	луча)		
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5	
16	600	500	200	200	600	750	300	300	
63	600	500	200	200	750	750	300	300	
100	600	500	200	200	750	750	300	300	
Dn, мм			200			25	0		
		(4	луча)	-	(6 лучей)				
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5	
16	600	1000	400	400	750	1250	500	500	
63	1000	1000	400	400	750	1250	500	500	
100	1000	1000	400	400	1000	1250	500	500	
Dn, мм			300				400		
		(6 ג	пучей)	-		(8	лучей)		
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5	
16	900	1500	600	600	1200	2000	800	800	
63	900	1500	600	600	1200	2000	800	800	
100	900	1500	600	600	1200	2000	800	800	
Dn, мм			500						
		(8 ג	(8 лучей)					•	
Pn, кг/см ²	L	L1	L2 min	L5					
16	1500	2500	1000	1000					
63	1500	2500	1000	1000					
100	1500	2500	1000	1000					

Рисунок Д.15 – Монтаж реверсивного расходомера со струевыпрямителем классов точности В (1,0 % - 1,0 %) и Г (1,0 % - 2,0 %)

Dn, мм		50 (4 луча) L L1 L2 L5				80 (4 луча	ı)		100 (4 луча)			
Рп, кг/см ²	L	L1	L2	L5	L	L1	L2	L5	L	L1	L2	L5
16 ANSI150	600	1000	250	100	600	1600	400	160	600	2000	500	200
63 ANSI400	600	1000	250	100	800	1600	400	160	800	2000	500	200
100 ANSI600	600	1000	250	100	800	1600	400	160	800	2000	500	200
Dn, мм		150				200				250		
P (2		(4 луча	ı)		(4 луча)				(6 лучей)			
Рп, кг/см	L	L1	L2	L5	L	L1	L2	L5	L	L1	L2	L5
16 ANSI150	450	3000	750	300	600	4000	1000	400	750	5000	1250	500
63 ANSI400	750	3000	750	300	1000	4000	1000	400	750	5000	1250	500
100 ANSI600	750	3000	750	300	1000	4000	1000	400	1000	5000	1250	500
Dn, мм		300				400				500		
		(6 луче	й)			(8 луче	й)			(8 луче	й)	
$\mathbf{P}_{\mathbf{n}}$ $\mathbf{w}_{\mathbf{n}}/2$	L1	состоит из ді	вух час	гей	L1	состоит из ді	вух час	гей	L1	состоит из ді	вух част	гей
	L	L1	L2	L5	L	L1	L2	L5	L	L1	L2	L5
16 ANSI150	900	3000+3000	1500	600	1200	4000+4000	2000	800	1500	5000+5000	2500	1000
63 ANSI400	900	3000+3000	1500	600	1200	4000+4000	2000	800	1500	5000+5000	2500	1000
100 ANSI600	900	3000+3000	1500	600	1200	4000+4000	2000	800	1500	5000+5000	2500	1000

Рисунок Д.16 – Монтаж расходомера классов точности А (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %)

для Dn100-150 - 3Dn

Dn, мм		50						80				
			(4 лу	ча)					(4 лу	уча)		
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16 ANSI150	600	500	200	250	6	100	600	800	320	400	10	160
63 ANSI400	600	500	200	250	6	100	800	800	320	400	10	160
100 ANSI600	600	500	200	250	6	100	800	800	320	400	10	160
Dn, мм			10 (4 лу) ча)			150 (4 луча)					
Pn, $\kappa \Gamma / c M^2$	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16 ANSI150	600	1000	300	500	12	200	450	1500	450	750	18	300
63 ANSI400	800	1000	300	500	12	200	750	1500	450	750	18	300
100 ANSI600	800	1000	300	500	12	200	750	1500	450	750	18	300
Dn, мм			200)		250						
			(4 лу	ча)		(6 лучей)						
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16 ANSI150	600	2000	400	1000	24	400	750	2500	500	1250	30	500
63 ANSI400	1000	2000	400	1000	24	400	750	2500	500	1250	30	500
100 ANSI600	1000	2000	400	1000	24	400	1000	2500	500	1250	30	500
Dn, мм			300)		•			40)0		
		r	(6 луч	ей)		1			(8 лу	чей)		
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16 ANSI150	900	3000	600	1500	36	600	1200	4000	800	2000	48	800
63 ANSI400	900	3000	600	1500	36	600	1200	4000	800	2000	48	800
100 ANSI600	900	3000	600	1500	36	600	1200	4000	800	2000	48	800
Dn, мм			500 איעים (8) цей)								
Pn, кг/см ²	L	L1	L2	L3	L4	L5						
16 ANSI150	1500	5000	1000	2500	60	1000						
63 ANSI400	1500	5000	1000	2500	60	1000						
100 ANSI600	1500	5000	1000	2500	60	1000						

Рисунок Д.17 – Монтаж расходомера со струевыпрямителем со вставкой 2 Dn классов точности A (0,5 % - 0,3 %) и Б (0,5% - 0,5%)

Turbo Flow UFG-F

50 80										
		(4 луча)				r	(4 J	пуча)		r
L	L1	L2 min	L3	L5	L	L1	L2	min	L3	L5
600	500	100	250	100	600	800	1	60	400	160
600	500	100	250	100	800	800	1	60	400	160
600	500	100	250	100	800	800	1	60	400	160
		100 (4 луча)					1 (4 1	50 (1)		
L	L1	L2 min	L3	L5	L	L1		$2 \min$	L3	L5
600	1000	200	500	200	450	150	0	300	750	300
800	1000	200	500	200	750	150	0	300	750	300
800	1000	200	500	200	750	150	0	300	750	300
		200 (4 луча)					2 (6 л	250 учей)		
L	L1	L2 mi	n L3	L5	L	L1	L2 n	nin	L3	L5
600	2000	400	1000	400	750	2500	50	00	1250	500
1000	2000	400	1000	400	750	2500	50	00	1250	500
1000	2000	400	1000	400	1000	2500	50	00	1250	500
	(300 6 луней)					4 (8 п	400 улей)		
L	L1	$\frac{0 \text{ Jly}(M)}{1.2 \text{ min}}$	13	1.5	T	L1	L2 n	jy (Ch)	13	1.5
900	3000	600	1500	600	1200	4000	800	0	2000	800
900	3000	600	1500	600	1200	4000	800	0	2000	800
900	3000	600	1500	600	1200	4000	800	0	2000	800
	(500 8 лучей)	1			1		ı		
L		L2 min	L3	L5						
1500	5000	1000	2500	1000						
1500	5000	1000	2500	1000						
1500	5000	1000	2500	1000						
	L 600 600 600 0 100 800 800 800 1000 1000	L L1 600 500 600 500 600 500 600 500 600 500 600 1000 800 1000 800 1000 800 1000 1000 2000 1000 2000 1000 2000 1000 2000 1000 3000 900 3000 900 3000 900 5000 1500 5000	50 L L1 L2 min 600 500 100 600 500 100 600 500 100 600 500 100 600 500 100 600 500 100 600 500 100 600 1000 200 800 1000 200 800 1000 200 800 1000 200 600 2000 400 1000 2000 400 1000 2000 400 1000 2000 400 1000 2000 400 1000 2000 400 1000 2000 400 1000 2000 400 1000 2000 400 1000 2000 400 1000 3000 600 900 3000 600 900 3000 600 1500 5000 1000	50 (4 луча) L L1 L2 min L3 600 500 100 250 600 500 100 250 600 500 100 250 600 500 100 250 600 500 100 250 600 500 100 250 600 1000 200 500 800 1000 200 500 800 1000 200 500 800 1000 200 500 800 1000 200 400 1000 1000 2000 400 1000 1000 2000 400 1000 1000 2000 400 1000 1000 2000 400 1000 1000 2000 400 1000 1000 2000 400 1000 1000 3000 600 1500 900 3000 600 1500 900 </td <td>50 L L1 2 min L3 L5 600 500 100 250 100 600 500 100 250 100 600 500 100 250 100 600 500 100 250 100 600 500 100 250 100 600 500 100 250 100 600 1000 200 500 200 800 1000 200 500 200 800 1000 200 500 200 800 1000 200 500 200 800 1000 200 400 1000 400 1000 2000 400 1000 400 1000 2000 400 1000 400 1000 2000 400 1000 600 900 3000 600 1500</td> <td>S0 (4 луча) L3 L5 L 600 500 100 250 100 800 600 1000 200 500 200 450 600 1000 200 500 200 750 800 1000 200 500 200 750 800 1000 200 500 200 750 1000 2000 400 1000 400 750 1000 2000 400 1000 400 750 1000 2000 400 1000 400 1000 1000 1000 2000 400 1000 400 100 100<</td> <td>50 (4 луча) L L1 L2 min L3 L5 L L1 600 500 100 250 100 600 800 600 500 100 250 100 800 800 600 500 100 250 100 800 800 600 500 100 250 100 800 800 600 500 100 250 100 800 800 600 1000 200 500 200 450 150 600 1000 200 500 200 750 150 800 1000 200 500 200 750 150 600 2000 400 1000 400 750 2500 1000 2000 400 1000 400 1000 2500 1000 2000 400 1000 400 100 2</td> <td>50 (4 луча) (4 луча) L L1 L2 min L3 L5 L L1 L2 600 500 100 250 100 600 800 1 600 500 100 250 100 800 800 1 600 500 100 250 100 800 800 1 600 500 100 250 100 800 800 1 600 1000 200 500 200 450 1500 4 600 1000 200 500 200 750 1500 4 800 1000 200 500 200 750 1500 50 800 1000 2000 400 1000 400 750 250 50 1000 2000 400 1000 400 1000 2500 50 1000 2000</td> <td>50 (4 луча) (4 луча) L L1 L2 min L3 L5 L L1 L2 min 600 500 100 250 100 600 800 160 600 500 100 250 100 800 800 160 600 500 100 250 100 800 800 160 600 500 100 250 100 800 800 160 600 500 100 250 100 800 800 160 600 1000 200 500 200 450 150 300 800 1000 200 500 200 750 150 300 800 1000 200 500 200 750 150 300 1000 2000 400 1000 400 750 2500 500 1000 2000 400</td> <td>50 $(4 nyva)$ $(4 nyva)$ $(4 nyva)$ $(4 nyva)$ $(4 nyva)$ L L1 L2 min L3 L5 L L1 L2 min L3 600 500 100 250 100 600 800 160 400 600 500 100 250 100 800 800 160 400 600 500 100 250 100 800 800 160 400 600 500 100 250 100 800 800 160 400 600 500 100 250 100 800 800 160 400 600 1000 200 500 200 750 1500 300 750 800 1000 200 500 200 750 1500 300 750 800 1000 200 500 200 750 250 200 200</td>	50 L L1 2 min L3 L5 600 500 100 250 100 600 500 100 250 100 600 500 100 250 100 600 500 100 250 100 600 500 100 250 100 600 500 100 250 100 600 1000 200 500 200 800 1000 200 500 200 800 1000 200 500 200 800 1000 200 500 200 800 1000 200 400 1000 400 1000 2000 400 1000 400 1000 2000 400 1000 400 1000 2000 400 1000 600 900 3000 600 1500	S0 (4 луча) L3 L5 L 600 500 100 250 100 800 600 500 100 250 100 800 600 500 100 250 100 800 600 500 100 250 100 800 600 500 100 250 100 800 600 1000 200 500 200 450 600 1000 200 500 200 750 800 1000 200 500 200 750 800 1000 200 500 200 750 1000 2000 400 1000 400 750 1000 2000 400 1000 400 750 1000 2000 400 1000 400 1000 1000 1000 2000 400 1000 400 100 100 <	50 (4 луча) L L1 L2 min L3 L5 L L1 600 500 100 250 100 600 800 600 500 100 250 100 800 800 600 500 100 250 100 800 800 600 500 100 250 100 800 800 600 500 100 250 100 800 800 600 1000 200 500 200 450 150 600 1000 200 500 200 750 150 800 1000 200 500 200 750 150 600 2000 400 1000 400 750 2500 1000 2000 400 1000 400 1000 2500 1000 2000 400 1000 400 100 2	50 (4 луча) (4 луча) L L1 L2 min L3 L5 L L1 L2 600 500 100 250 100 600 800 1 600 500 100 250 100 800 800 1 600 500 100 250 100 800 800 1 600 500 100 250 100 800 800 1 600 1000 200 500 200 450 1500 4 600 1000 200 500 200 750 1500 4 800 1000 200 500 200 750 1500 50 800 1000 2000 400 1000 400 750 250 50 1000 2000 400 1000 400 1000 2500 50 1000 2000	50 (4 луча) (4 луча) L L1 L2 min L3 L5 L L1 L2 min 600 500 100 250 100 600 800 160 600 500 100 250 100 800 800 160 600 500 100 250 100 800 800 160 600 500 100 250 100 800 800 160 600 500 100 250 100 800 800 160 600 1000 200 500 200 450 150 300 800 1000 200 500 200 750 150 300 800 1000 200 500 200 750 150 300 1000 2000 400 1000 400 750 2500 500 1000 2000 400	50 $(4 nyva)$ $(4 nyva)$ $(4 nyva)$ $(4 nyva)$ $(4 nyva)$ L L1 L2 min L3 L5 L L1 L2 min L3 600 500 100 250 100 600 800 160 400 600 500 100 250 100 800 800 160 400 600 500 100 250 100 800 800 160 400 600 500 100 250 100 800 800 160 400 600 500 100 250 100 800 800 160 400 600 1000 200 500 200 750 1500 300 750 800 1000 200 500 200 750 1500 300 750 800 1000 200 500 200 750 250 200 200

Рисунок Д.18 – Монтаж расходомера классов точности А (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %) со струевыпрямителем без вставки 2Dn

ООО НПО «Турбулентность – ДОН»

Руководство по эксплуатации

L4	10 <u>-16</u> %					4			L.	5			
0,12Dn			7		→ -					חת 3 			
		11	L			1		L		12			
		LI				L L2 Ana Da50_100 _ 1. Da							
לא – 4Dr מאש שלא – 4Dr מאש שלא – 4Dr	ן חח								עווא	טווטט-ונ	<i>JU = 4D</i>	11	
Dn. мм	,,,	50 80											
			(4 лу	ча)					(4 л	уча)			
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5	
16 ANSI150	600	250	200	200	6	100	600	400	320	320	10	160	
63 ANSI400	600	250	200	200	6	100	800	400	320	320	10	160	
100 ANSI600	600	250	200	200	6	100	800	400	320	320	10	160	
Dn, мм													
Pn, кг/см ²	L	L1	(4 лу L2	4a)	Ι4	L5	L	L1	(4 J) L2	уча) L3	Ι.4	1.5	
16 ANSI150	600	500	300	400	12	200	450	750	450	450	18	300	
63 ANSI400	800	500	300	400	12	200	750	750	450	450	18	300	
100	800	500	300	400	12	200	750	750	450	450	18	300	
Dn, MM			200	0					25	50			
		I	(4 лу	ча)		1			(6 лу	чей)		1	
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5	
16 ANSI150	600	1000	400	600	24	400	750	1250	500	750	30	500	
63 ANSI400	1000	1000	400	600	24	400	750	1250	500	750	30	500	
100 ANSI600	1000	1000	400	600	24	400	1000	1250	500	750	30	500	
Dn, мм			300 (6 луч	0 ней)					4((8 лу)0 /чей)			
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5	
16 ANSI150	900	1500	600	900	36	600	1200	2000	800	1200	48	800	
63 ANSI400	900	1500	600	900	36	600	1200	2000	800	1200	48	800	
100 ANSI600	900	1500	600	900	36	600	1200	2000	800	1200	48	800	
Dn, мм			500 (8 луч	0 ней)									
Pn, кг/см ²	L	L1	L2	L3	L4	L5							
16 ANSI150	1500	2500	1000	1500	60	1000							
63 ANSI400	1500	2500	1000	1500	60	1000							
100 ANSI600	1500	2500	1000	1500	60	1000							

Рисунок Д.19 – Монтаж расходомера со струевыпрямителем укороченной длины со вставкой 2 Dn классов точности A (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %) (при условии калибровки в сборе)

Dn, мм			50					80	a)	
Рп. кг/см ²	т	τ1	(4 луча) I 2 min	12	τ.5	т	T 1	(4 луч I 2 min	a) 1 3	15
	L	LI		LJ	LJ	L			LJ	LS
ANSI150	600	300	100	200	100	600	400	160	320	160
63 ANSI400	600	300	100	200	100	800	400	160	320	160
100 ANSI600	600	300	100	200	100	800	400	160	320	160
Dn, мм			100 (4 луча)					150 (4 луч	a)	
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 min	L3	L5
16 ANSI150	600	500	200	400	200	450	750	300	450	300
63 ANSI400	800	500	200	400	200	750	750	300	450	300
100 ANSI600	800	500	200	400	200	750	750	300	450	300
Dn, мм			200					250	U \	
Pn, кг/см ²	L	L1	(4 луча) L2 min	L3	L5	L	L1	(6 луче L2 min	си) L3	L5
16 ANSI150	600	1000	400	600	400	750	1250	500	750	500
63 ANSI400	1000	1000	400	600	400	750	1250	500	750	500
100 ANSI600	1000	1000	400	600	400	1000	1250	500	750	500
Dn, мм			300 (6 тупей)					400 (8 луце		
Pn, кг/см ²	L	L1	$L2 \min$	L3	L5	L	L1	$L2 \min$	L3	L5
16 ANSI150	900	1500	600	900	600	1200	2000	800	1200	800
63 ANSI400	900	1500	600	900	600	1200	2000	800	1200	800
100 ANSI600	900	1500	600	900	600	1200	2000	800	1200	800
Dn, мм			500 (8 пучей))	1		I			
Pn, кг/см ²	L	L1	L2	L3	L5					
16 ANSI150	1500	2500	1000	1500	1000					
63 ANSI400	1500	2500	1000	1500	1000					
100 ANSI600	1500	2500	1000	1500	1000					

Рисунок Д.20 – Монтаж расходомера со струевыпрямителем укороченный без вставки 2Dn классов точности А (0,5 % - 0,3 %) и Б (0,5 % - 0,5%) (при условии калибровки в сборе)

Dn, мм		5	0		80				100				
		(4 л	уча)			(4 л	уча)			(4 л	уча)		
Pn, кг/см ²	L	L1	L3	L5	L	L1	L3	L5	L	L1	L3	L5	
16 ANSI150	600	500	200	100	600	800	320	160	600	1000	400	200	
63 ANSI400	600	500	250	100	800	800	320	160	600	1000	400	200	
100 ANSI600	600	500	250	100	800	800	320	160	600	1000	400	200	
Dn, мм	150					20	00			25	50		
		(4 л	уча)			(4 луча)				(6 лучей)			
Pn, $\kappa \Gamma/cm^2$	L	L1	L3	L5	L	L1	L3	L5	L	L1	L3	L5	
16 ANSI150	600	1500	450	300	600	2000	600	400	750	2500	750	500	
63 ANSI400	750	1500	450	300	1000	2000	600	400	750	2500	750	500	
100 ANSI600	750	1500	450	300	1000	2000	600	400	1250	2500	750	500	
Dn, мм		30)0			40	00			50	00		
		(6 лу	чей)			(8 лу	чей)			(8 лу	/чей)		
Pn, $\kappa \Gamma/cm^2$	L	L1	L3	L5	L	L1	L3	L5	L	L1	L3	L5	
16 ANSI150	900	3000	900	600	1200	4000	1200	800	1500	5000	1500	1000	
63 ANSI400	900	3000	900	600	1200	4000	1200	800	1500	5000	1500	1000	
100 ANSI600	900	3000	900	600	1200	4000	1200	800	1500	5000	1500	1000	

Рисунок Д.21 – Монтаж расходомера классов точности В (1,0 % - 1,0 %) и Г (1,0 % - 2,0 %)

Dn, мм			50					80	o)	
Pn, кг/см ²	L	L1	(4 луча) L2 min	L3	L5	L	L1	L2 min	a) L3	L5
16 ANSI150	600	250	100	200	100	600	400	160	320	160
63 ANSI400	600	250	100	200	100	800	400	160	320	160
100 ANSI600	600	250	100	200	100	800	400	160	320	160
Dn, мм			100 (4 луча)					150 (4 луч	a)	
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 min	L3	L5
16 ANSI150	600	500	200	300	200	600	750	300	450	300
63 ANSI400	600	500	200	300	200	750	750	300	450	300
100 ANSI600	600	500	200	300	200	750	750	300	450	300
Dn, мм			200 (4 луча)					250 (6 пуче	-й)	
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 min	L3	L5
16 ANSI150	600	1000	400	600	400	750	1250	500	750	500
63 ANSI400	1000	1000	400	600	400	750	1250	500	750	500
100 ANSI600	1000	1000	400	600	400	1250	1250	500	750	500
Dn, мм			300 (6 лучей))				400 (8 луче	ей)	
Pn, кг/см ²	L	L1	L2 min	L3	L5	L	L1	L2 min	L3	L5
16 ANSI150	900	1500	600	900	600	1200	2000	800	1200	800
63 ANSI400	900	1500	600	900	600	1200	2000	800	1200	800
100 ANSI600	900	1500	600	900	600	1200	2000	800	1200	800
Dn, мм			500 (8 пучей))						
Pn, кг/см ²	L	L1	L2 min	L3	L5					
16 ANSI150	1500	2500	1000	1500	1000					
63 ANSI400	1500	2500	1000	1500	1000					
100 ANSI600	1500	2500	1000	1500	1000					

Рисунок Д.22 – Монтаж расходомера со струевыпрямителем без вставки 2Dn классов точности В (1 % - 1 %) и Б (1 % - 2%) (при условии калибровки в сборе)

Руководство по эксплуатации

Dn, мм			50	1			80					
		1	(4 лу	ча)					(4 л	уча)		
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16 ANSI150	600	250	200	200	6	100	600	400	320	320	10	160
63 ANSI400	600	250	200	200	6	100	800	400	320	320	10	160
100 ANSI600	600	250	200	200	6	100	800	400	320	320	10	160
Dn, мм		1	100)			150					
		1	(4 лу	ча)					(4 л	уча)		
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16 ANSI150	600	500	300	400	12	200	600	750	450	450	18	300
63 ANSI400	600	500	300	400	12	200	750	750	450	450	18	300
100 ANSI600	600	500	300	400	12	200	750	750	450	450	18	300
Dn, мм		1	200)		250						
		1	(4 лу	ча)			(6 лучей)					
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16 ANSI150	600	1000	400	600	24	400	750	1250	500	750	30	500
63 ANSI400	1000	1000	400	600	24	400	750	1250	500	750	30	500
100 ANSI600	1000	1000	400	600	24	400	1000	1250	500	750	30	500
Dn, мм		1	300)					40	0		
			(6 луч	ией)			(8 лучей)					
Pn, кг/см ²	L	L1	L2	L3	L4	L5	L	L1	L2	L3	L4	L5
16 ANSI150	900	1500	600	900	36	600	1200	2000	800	1200	48	800
63 ANSI400	900	1500	600	900	36	600	1200	2000	800	1200	48	800
100 ANSI600	900	1500	600	900	36	600	1200	2000	800	1200	48	800
Dn, мм			500)		1						
			(8 луч	ией)								
Pn, кг/см ²	L	L1	L2	L3	L4	L5						
16 ANSI150	1500	2500	1000	1500	60	1000						
63 ANSI400	1500	2500	1000	1500	60	1000						
100 ANSI600	1500	2500	1000	1500	60	1000						
Рисунок Д.23 – М	[онтаж]	расходс	мера со	о струе	выпря	мителе	м со во	ставкої	i 2Dn	классо	в точн	юсти

В (1,0 % - 1,0 %) и Г (1,0 % - 2,0 %)

Dn, мм		50			80			100	100			
		(4 луча)			(4 луча)			(4 луча)				
Pn, кг/см ²	L	L1	L5	L	L1	L5	L	L1	L5			
16 ANSI150	600	1000	100	600	1600	160	600	2000	200			
63 ANSI400	600	1000	100	800	1600	160	800	2000	200			
100 ANSI600	600	1000	100	800	1600	160	800	2000	200			
Dn, мм		150			200			250				
		(4 луча)			(4 луча)			(6 лучей)				
Pn, кг/см ²	L	L1	L5	L	L1	L5	L	L1	L5			
16 ANSI150	450	3000	300	600	4000	400	750	5000	500			
63 ANSI400	750	3000	300	1000	4000	400	750	5000	500			
100 ANSI600	750	3000	300	1000	4000	400	1000	5000	500			
Dn, мм		300			400			500				
		(6 лучей)			(8 лучей)			(8 лучей)				
	L1 co	стоит из двух	частей	L1 coc	тоит из двух ч	астей	L1 coc	тоит из двух ч	астей			
Pn, кг/см ²	L	L1	L5	L	L1	L5	L	L1	L5			
16 ANSI150	900	3000+3000	600	1200	4000+4000	800	1500	5000+5000	1000			
63 ANSI400	900	3000+3000	600	1200	4000+4000	800	1500	5000+5000	1000			
100 ANSI600	900	3000+3000	600	1200	4000+4000	800	1500	5000+5000	1000			

Рисунок Д.24 – Монтаж реверсивного расходомера классов точности A (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %)

Руководство по эксплуатации

Рисунок Д.25 – Монтаж реверсивного расходомера со струевыпрямителем со вставкой 2 Dn классов точности A (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %)

Dn, мм	50			80				
		(4 л	уча)			(4	луча)	T
Pn, кг/см ²	\mathbf{L}	L1	L2 min	L5	L	L1	L2 min	L5
16 ANSI150	600	500	100	100	600	800	320	160
63 ANSI400	600	500	100	100	800	800	320	160
100 ANSI600	600	500	100	100	800	800	320	160
Dn, мм	100 (4 луча)			150 (4 луча)				
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5
16 ANSI150	600	1000	200	200	450	1500	300	300
63 ANSI400	800	1000	200	200	750	1500	300	300
100 ANSI600	800	1000	200	200	750	1500	300	300
Dn, мм		2	00				250	
	(4 луча) (6 лучей)							
Рп, кг/см	L	L1	L2 min	L5	L	L1	L2 min	L5
16 ANSI150	600	2000	400	200	750	2500	500	500
63 ANSI400	1000	2000	400	200	750	2500	500	500
100 ANSI600	1000	2000	400	200	1000	2500	500	500
Dn, мм		3 (6 m	00 учей)		400 (8 лучей)			
Pn, $\kappa \Gamma/cm^2$	L	L1	L2 min	L5	L	L1	L2 min	L5
16 ANSI150	900	3000	600	600	1200	4000	800	800
63 ANSI400	900	3000	600	600	1200	4000	800	800
100 ANSI600	900	3000	600	600	1200	2000	800	800
Dn, мм		5 (8 m	00 мией)				· · · · ·	
Pn, $\kappa \Gamma/cm^2$	L	L1	L2 min	L5				
16 ANSI150	1500	5000	1000	1000				
63 ANSI400	1500	5000	1000	1000				
100 ANSI600	1500	5000	1000	1000				

Рисунок Д.26 – Монтаж реверсивного расходомера со струевыпрямителем без вставки 2 Dn классов точности A (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %)

Руководство по эксплуатации

для Dn100–150 – 3Dn

Dn, мм	50			80						
			(4 луча)			(4 луча)				
Pn, кг/см ²	L	L1	L2	L4	L5	L	L1	L2	L4	L5
16 ANSI150	600	250	200	6	100	600	400	320	10	160
63 ANSI400	600	250	300	6	100	800	400	320	10	160
100 ANSI600	600	250	300	6	100	800	400	320	10	160
Dn, мм			100 (4 луча)			150 (4 mma)				
Pn, кг/см ²	L	L1	L2	L4	L5	L	L1	L2	L4	L5
16 ANSI150	600	500	300	12	150	450	750	450	18	200
63 ANSI400	800	500	300	12	150	750	750	450	18	200
100 ANSI600	800	500	300	12	150	750	750	450	18	200
Dn, мм			200			250				
Pn, кг/см ²	L		(4 луча) L2	Ι.4	L5	L	L1	(6 лучей L2) I.4	1.5
16 ANSI150	600	1000	400	24	400	750	1250	500	30	500
63 ANSI400	1000	1000	400	24	400	750	1250	500	30	500
100 ANSI600	1000	1000	400	24	400	1000	1250	500	30	500
Dn, мм			300			400				
D ₁ =		(6 лучей)		1			(8 лучей)	
Pn, KГ/CM	L	L1	L2	L4	L5	L	L1	L2	L4	L5
ANSI150	900	1500	600	36	300	1200	2000	800	48	400
63 ANSI400	900	1500	600	36	300	1200	2000	800	48	400
100 ANSI600	900	1500	600	36	300	1200	2000	800	48	400
Dn, мм		(500 8 лучей)							
Pn, кг/см ²	L	L1	L2	L4	L5					
16 ANSI150	1500	2500	1000	60	500					
63 ANSI400	1500	2500	1000	60	500					
100 ANSI600	1500	2500	1000	60	500					

Рисунок Д.27 – Монтаж реверсивного расходомера укороченной длины со струевыпрямителем со вставкой 2 Dn классов точности А (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %)

Dn, мм	50			80				
		(4 л	уча)	1		(4 J	іуча)	
Pn, $\kappa \Gamma/cm^2$	L	L1	L2 min	L5	L	L1	L2 min	L5
16 ANSI150	600	250	200	100	600	400	320	160
63 ANSI400	600	250	200	100	800	400	320	160
100 ANSI600	600	250	200	100	800	400	320	160
Dn, мм		1 (Д п	00 (VHa)		150 (4 mma)			
Pn, кг/см ²	L	L1	L2 min	L5	L		L2 min	L5
16 ANSI150	600	500	300	150	450	750	450	200
63 ANSI400	800	500	300	150	750	750	450	200
100 ANSI600	800	500	300	1500	750	750	450	200
Dn, мм		2	00		250			
		(4 л	уча)	[(6 лучей)			
Рп, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5
16 ANSI150	600	1000	400	400	750	1250	500	500
63 ANSI400	1000	1000	400	400	750	1250	500	500
100 ANSI600	1000	2000	400	400	1000	1250	500	500
Dn, мм		3 (6 лч	00 учей)		400 (8 лучей)			
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5
16 ANSI150	900	1500	600	300	1200	2000	800	400
63 ANSI400	900	1500	600	300	1200	2000	800	400
100 ANSI600	900	1500	600	300	1200	4000	800	400
Dn, мм		5 (8 л	00 vчей)					
Pn, $\kappa \Gamma/cm^2$	L	L1	L2 min	L5				
16 ANSI150	1500	2500	1000	500				
63 ANSI400	1500	2500	1000	500				
100 ANSI600	1500	2500	1000	500				

Рисунок Д.28 – Монтаж реверсивного расходомера со струевыпрямителем со вставкой 2 Dn классов точности А (0,5 % - 0,3 %) и Б (0,5 % - 0,5 %)

Руководство по эксплуатации

Dn, мм		50			80			100	
		(4 луча)			(4 луча)			(4 луча)
Pn, кг/см ²	L	L1	L5	L	L1	L5	L	L1	L5
16 ANSI150	600	500	100	600	800	160	600	1000	200
63 ANSI400	600	500	100	800	800	160	600	1000	200
100 ANSI600	600	500	100	800	800	160	600	1000	200
Dn, мм		150			200			250	
		(4 луча)			(4 луча)		(6 лучей)		
Pn, $\kappa \Gamma / c M^2$	L	L1	L5	L	L1	L5	L	L1	L5
16 ANSI150	600	1500	300	600	2000	400	750	2500	500
63 ANSI400	750	1500	300	1000	2000	400	750	2500	500
100 ANSI600	750	1500	300	1000	2000	400	1000	2500	500
Dn, мм		300			400			500	
		(6 лучей)			(8 лучей)			(8 луче)	á)
Pn, кг/см ²	L	L1	L5	L	L1	L5	L	L1	L5
16 ANSI150	900	3000	600	1200	4000	800	1500	5000	1000
63 ANSI400	900	3000	600	1200	4000	800	1500	5000	1000
100 ANSI600	900	3000	600	1200	4000	800	1500	5000	1000

Рисунок Д.29 – Монтаж реверсивного расходомера классов точности В (1,0 % - 1,0 %) и Г (1,0 % - 2,0 %)

Dn, мм	50			80				
		(4	луча)			(4	луча)	
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5
16 ANSI150	600	250	100	100	600	400	160	160
63 ANSI400	600	250	100	100	800	400	160	160
100 ANSI600	600	250	100	100	800	400	160	160
Dn, мм		(4	100 луча)		150 (4 луча)			
Pn, кг/см ²	L	L1	L2 min	L5	L	L1	L2 min	L5
16 ANSI150	600	500	200	200	600	750	300	300
63 ANSI400	60	600	200	200	750	750	300	300
100 ANSI600	600	600	200	200	750	750	300	300
Dn, мм			200				250	
D ₁ =		(4	луча)			(6.	лучей)	
Рп, кг/см	L	L1	L2 min	L5	L	L1	L2 min	L5
16 ANSI150	600	1000	400	400	750	1250	500	500
63 ANSI400	1000	1000	400	400	750	1250	500	500
100 ANSI600	1000	1000	400	400	1000	1250	500	500
Dn, мм		(6)	300 пучей)		400 (8 лучей)			
Pn, кг/см ²	L	L1	$\frac{1}{12}$ L2 min	L5	L	L1	L2 min	L5
16 ANSI150	900	1500	600	600	1200	200	800	800
63 ANSI400	900	1500	600	600	1200	2000	800	800
100 ANSI600	900	1500	600	600	1200	2000	800	800
Dn, мм		(8)	500 тучей)					
Pn, кг/см ²	L	L1	L2 min	L5				
16 ANSI150	1500	2500	1000	1000				
63 ANSI400	1500	2500	1000	1000				
100 ANSI600	1500	2500	1000	1000				

Рисунок Д.30 – Монтаж реверсивного расходомера со струевыпрямителем классов точности В (1,0 % - 1,0 %) и Г (1,0 % - 2,0 %)

Приложение Е (справочное)

Схема пломбирования расходомера

Заглушки над пломбами маркированы точками

Рисунок Е.3 – Схема пломбирования расходомерного шкафа

1. Объен оболочки I 44.5.7 см^{2,} объен оболочки II 10217 см². 2. Полости нежду стеклон и кръшкой заполнить гартетикан Реттовек Свеат RTV. 3. Клей-гертетик Реттовек Свеат RTV нанасить на предварительна

0

1(2)

очыценную от загрязнении и обезжиренную поверхность

4. Шероховатость поверхностей Вэрыв

~- Ra 25

Приложение Ж (обязательное)

Организация взрывозащиты

5. На поверхности Вэрьво дефекть и подреждения не допускается. 6. Крышки оболочки і фиксировать от аткучивания правалякой витой пландировачной д-0,65 мн и пландой свиниовой д-8 мн.

Приложение И (справочное)

Схема обеспечения искробезопасности

Рисунок И.1 – Схема обеспечения искробезопасности

Приложение К

Карта регистров ModBus PIII UFG Версия ПО 1.13.1.0

Таблица К. 1 – Общая карта регистров

№	Смещение	Наименование	Примечание
1	0x0000	Текущие значения	
2	0x1000	Настройки	
3	0x2000	Архивы (часовые, суточные)	
4	0x2100	Архив информационных событий	
5	0x2200	Архив событий	
6	0x3000	Состав газа	

Данные располагаются и передаются в кодировке BigEndian (сначала старший байт).

Nº	Адрес	Наименование	Тип данных	Доступ	Примечание
1	0x0000	Расход стандартный, м ³ /ч	float32	R	
2	0x0002	Расход рабочий, м ³ /ч	float32	R	
3	0x0004	Температура, °С	float32	R	
4	0x0006	Давление абсолютное, МПа	float32	R	
5	0x0008	Давление избыточное, МПа	float32	R	
6	0x000A	Скорость потока, м/с	float32	R	
7	0x000C	Скорость звука, м/с	float32	R	
8	0x000E	Коэффициент сжимаемости	float32	R	
9	0x0010	Номер диапазона	float32	R	
10	0x0012	Код НС ПП	uint32	R	
11	0x0014	Время работы, с	uint32	R	
12	0x0016	Время простоя, с	uint32	R	
13	0x0018	Код НС РШ	uint32	R	
14	0x001A	Текущий прямой суммарный стандартный объем, м ³	float64	R	
15	0x001E	Текущий прямой суммарный рабочий объем, м ³	float64	R	
16	0x0022	Текущий реверсивный суммарный стандартный объем, м ³	float64	R	
17	0x0026	Текущий реверсивный суммарный рабочий объем, м ³	float64	R	

Таблица К.2 – Текущие значения доступны только для чтения (R)

Таблица К.3 - Настройки расходомера доступны для чтения и записи (W), перед записью необходимо ввести пароль поставщика (P).

Nº	Адрес	Наименование	Тип данных	Доступ	Примечание
1	0x1000	Пароль поставщика	20 ASCII символов	R/W	
2	0x100A	Дата/Время прибора: Секунда	uint8	R/W/P	старший байт=0х00
3	0x100B	Дата/Время прибора: Минута	uint8	R/W/P	старший байт=0х00
4	0x100C	Дата/Время прибора: Час	uint8	R/W/P	старший байт=0х00
5	0x100D	Дата/Время прибора: День недели	uint8	R/W/P	старший байт=0х00
6	0x100E	Дата/Время прибора: Число	uint8	R/W/P	старший байт=0x00
7	0x100F	Дата/Время прибора: Месяц	uint8	R/W/P	старший байт=0x00
8	0x1010	Дата/Время прибора: Год (0099)	uint8	R/W/P	старший байт=0x00
9	0x1011	Номер канала	uint8	R/W	
10	0x1012	Расчетный час	uint8	R/W/P	
11	0x1013	Расчетные сутки	uint8	R/W/P	
12	0x1014	Сетевой адрес РШ	uint8	R/W/P	
13	0x1015	Период записи, с	uint16	R/W/P	
14	0x1016	Количество каналов	uint8	R/W/P	
15	0x1017	Период опроса ПП, с	uint16	R/W/P	
16	0x1018	Сетевой адрес ПП	uint8	R/W/P	
17	0x1019	Регистр управления	uint32	R/W/P	
18	0x101B	Мин. расход, м ³ /ч	float32	R/W/P	
19	0x101D	Макс. расход, м ³ /ч	float32	R/W/P	
20	0x100F	Порог отсечки по расходу, м ³ /ч	float32	R/W/P	
21	0x1021	Дог. расход, м ³ /ч	float32	R/W/P	
22	0x1023	Дог. мин. расход, м ³ /ч	float32	R/W/P	
23	0x1025	Мин. температура, °С	float32	R/W/P	
24	0x1027	Макс. температура, °С	float32	R/W/P	
25	0x1029	Дог. температура, °С	float32	R/W/P	
26	0x102B	Мин. давление, МПа	float32	R/W/P	
27	0x102D	Макс. давление, МПа	float32	R/W/P	
28	0x102F	Дог. давление, МПа	float32	R/W/P	
29	0x1031	Давление барометрическое, МПа	float32	R/W/P	
30	0x1033	Мин. скорость звука, м/с	float32	R/W/P	
31	0x1035	Макс. скорость звука, м/с	float32	R/W/P	
32	0x1037	Дог. скорость звука, м/с	float32	R/W/P	
33	0x1039	Мин. скорость потока, м/с	float32	R/W/P	
34	0x103B	Макс. скорость потока, м/с	float32	R/W/P	
35	0x103D	Дог. скорость потока, м/с	float32	R/W/P	
36	0x103F	Коэффициент сжимаемости	float32	R/W/P	
37	0x1041	Диаметр трубы	float32	R/W/P	

Руководство по эксплуатации

Таблица К.4 - Архивы расходомеры доступны для чтения, перед чтениемнеобходимо записать номер канала (нумерация с нуля), тип архива (0 – часовой, 1 – суточный, 2 – месячный, 3 – резерв, 4 – интервальный), дату/время записи (для архивов 0..2) или номер записи (для интервального архива) и считать регистры архивной структуры, начиная с регистра 0х2003. После чтения архивные записи инкрементируется самостоятельно.

1 0x2000 Номер канала uint8 R/W 2 0x2001 Тип архива uint8 R/W 3 0x2002 Номер записи uint16 R/W 4 0x2003 Дата/Время: Секунда uint8 R/W crapший байт = 02 5 0x2004 Дата/Время: Минута uint8 R/W crapший байт = 02 6 0x2005 Дата/Время: Час uint8 R/W crapший байт = 02 7 0x2006 Дата/Время: День недели uint8 R/W crapший байт = 02 8 0x2007 Дата/Время: Цисло uint8 R/W crapший байт = 02 9 0x2008 Дата/Время: Месяц uint8 R/W crapший байт = 02 10 0x2009 Дата/Время: Год (0099) uint8 R/W crapший байт = 02	
20x2001Тип архиваuint8R/W30x2002Номер записиuint16R/W40x2003Дата/Время: Секундаuint8R/Wстарший байт = 0250x2004Дата/Время: Минутаuint8R/Wстарший байт = 0260x2005Дата/Время: Часuint8R/Wстарший байт = 0270x2006Дата/Время: День неделиuint8R/Wстарший байт = 0280x2007Дата/Время: Дислоuint8R/Wстарший байт = 0290x2008Дата/Время: Числоuint8R/Wстарший байт = 02100x2009Дата/Время: Год (00.99)uint8R/Wстарший байт = 02	
3 0x2002 Номер записи uint16 R/W 4 0x2003 Дата/Время: Секунда uint8 R/W старший байт = 0: 5 0x2004 Дата/Время: Минута uint8 R/W старший байт = 0: 6 0x2005 Дата/Время: Час uint8 R/W старший байт = 0: 7 0x2006 Дата/Время: День недели uint8 R/W старший байт = 0: 8 0x2007 Дата/Время: Число uint8 R/W старший байт = 0: 9 0x2008 Дата/Время: Месяц uint8 R/W старший байт = 0: 10 0x2009 Дата/Время: Год (0099) uint8 R/W старший байт = 0:	
4 0x2003 Дата/Время: Секунда uint8 R/W старший байт = 0: 5 0x2004 Дата/Время: Минута uint8 R/W старший байт = 0: 6 0x2005 Дата/Время: Час uint8 R/W старший байт = 0: 7 0x2006 Дата/Время: День недели uint8 R/W старший байт = 0: 8 0x2007 Дата/Время: Число uint8 R/W старший байт = 0: 9 0x2008 Дата/Время: Месяц uint8 R/W старший байт = 0: 10 0x2009 Дата/Время: Год (0099) uint8 R/W старший байт = 0:	
5 0x2004 Дата/Время: Минута uint8 R/W старший байт = 0: 6 0x2005 Дата/Время: Час uint8 R/W старший байт = 0: 7 0x2006 Дата/Время: День недели uint8 R/W старший байт = 0: 8 0x2007 Дата/Время: Число uint8 R/W старший байт = 0: 9 0x2008 Дата/Время: Месяц uint8 R/W старший байт = 0: 10 0x2009 Дата/Время: Год (0099) uint8 R/W старший байт = 0:	00
6 0x2005 Дата/Время: Час uint8 R/W старший байт = 0: 7 0x2006 Дата/Время: День недели uint8 R/W старший байт = 0: 8 0x2007 Дата/Время: Число uint8 R/W старший байт = 0: 9 0x2008 Дата/Время: Месяц uint8 R/W старший байт = 0: 10 0x2009 Дата/Время: Год (0099) uint8 R/W старший байт = 0:	00
7 0x2006 Дата/Время: День недели uint8 R/W старший байт = 0: 8 0x2007 Дата/Время: Число uint8 R/W старший байт = 0: 9 0x2008 Дата/Время: Месяц uint8 R/W старший байт = 0: 10 0x2009 Дата/Время: Год (0099) uint8 R/W старший байт = 0:	:00
8 0x2007 Дата/Время: Число uint8 R/W старший байт = 02 9 0x2008 Дата/Время: Месяц uint8 R/W старший байт = 02 10 0x2009 Дата/Время: Год (0099) uint8 R/W старший байт = 02	:00
9 0x2008 Дата/Время: Месяц uint8 R/W старший байт = 0 10 0x2009 Дата/Время: Год (0099) uint8 R/W старший байт = 0	:00
10 0x2009 Дата/Время: Год (0099) uint8 R/W старший байт = 0	.00
	:00
11 0x200A Прямой объем рабочий, м ³ float64 R	
12 0x200E Прямой объем стандартный, м ³ float64 R	
13 0x2012 Прямой объем восстановленный float64 R рабочий, м ³	
14 0x2016 Прямой объем восстановленный стандартный, м ³ float64 R	
15 $0x201A$ Прямой объем суммарный рабочий, M^3 float64 R	
16 0x201E Прямой объем суммарный float64 R стандартный, м ³ годоров собъем суммарный годоров собъем суммарный	
17 0x2022 Температура, °С float32 R	
18 0x2024 Давление, МПа float32 R	
19 0x2026 Коэффициент перевода float32 R	
20 0x2028 Код HC float16 R	
21 0x2029 Количество точек float16 R	
22 0x202A Время HC (0x0001) float16 R	
23 0x202B Время HC (0x0002) float16 R	
24 0x202C Время НС (0x0004) float16 R	
25 0x202D Время НС (0x0008) float16 R	
26 0x202E Время HC (0x0010) float16 R	
27 0x202F Время HC (0x0020) float16 R	
28 0x2030 Время НС (0x0040) float16 R	
29 0x2031 Время HC (0x0080) float16 R	
30 0x2032 Время HC (0x0100) float16 R	
31 0x2033 Время HC (0x0200) float16 R	
32 0x2034 Время НС (0x0400) float16 R	
33 0x2035 Время НС (0x0800) float16 R	
34 0x2036 Время HC (0x1000) float16 R	
35 0x2038 Реверсивный объем рабочий, м ³ float64 R	

Руководство по эксплуатации

прод	продолжение гаолицы кч								
N⁰	Адрес	Наименование	Тип данных	Доступ	Примечание				
36	0x203C	Реверсивный объем стандартный, м ³	float64	R					
37	0x2040	Реверсивный объем восстановленный рабочий, м ³	float64	R					
38	0x2044	Реверсивный объем восстановленный стандартный, м ³	float64	R					
39	0x2048	Реверсивный объем суммарный рабочий, м ³	float64	R					
40	0x204C	Реверсивный объем суммарный стандартный, м ³	float64	R					

Nº	Адрес	Наименование	Тип данных	Доступ	Примечание
1	0x2100	Кол-во событий	uint32	R	
2	0x2102	Дата/Время первой записи: Секунда	uint8	R	
3	0x2103	Дата/Время первой записи: Минута	uint8	R	
4	0x2104	Дата/Время первой записи: Час	uint8	R	
5	0x2105	Дата/Время первой записи: День недели	uint8	R	
6	0x2106	Дата/Время первой записи: Число	uint8	R	
7	0x2107	Дата/Время первой записи: Месяц	uint8	R	
8	0x2108	Дата/Время первой записи: Год (0099)	uint8	R	
9	0x2109	Дата/Время крайней записи: Секунда	uint8	R	
10	0x210A	Дата/Время крайней записи: Минута	uint8	R	
11	0x210B	Дата/Время крайней записи: Час	float8	R	
12	0x210C	Дата/Время крайней записи: День недели	float8	R	
13	0x210D	Дата/Время крайней записи: Число	float8	R	
14	0x210E	Дата/Время крайней записи: Месяц	float8	R	
15	0x210F	Дата/Время крайней записи: Год (0099)	float8	R	

Таблица К.5 - Архив информационных событий доступен только для чтения

Таблица К.6 - Архив событий доступен для чтения, перед чтением необходимо записать номер события и считать структуру архива событий, начиная с регистра 0х2200. После чтения номер архивной записи инкрементируется самостоятельно.

N⁰	Адрес	Наименование	Тип данных	Доступ	Примечание
1	0x2200	Номер события	uint32	R/W	
2	0x2202	Дата/Время записи: Секунда	uint8	R	
3	0x2203	Дата/Время записи: Минута	uint8	R	
4	0x2204	Дата/Время записи: Час	uint8	R	
5	0x2205	Дата/Время записи: День недели	uint8	R	
6	0x2206	Дата/Время записи: Число	uint8	R	
7	0x2207	Дата/Время записи: Месяц	uint8	R	
8	0x2208	Дата/Время записи: Год (0099)	uint8	R	
9	0x2209	Код события	uint8	R	
10	0x220A	Тип параметра	uint8	R	
11	0x220B	Код параметра	float16	R	
12	0x220C	Кол-во байт данных	float8	R	
13	0x220D	Данные	float16	R	
14	0x220E	Данные	float16	R	
15	0x220F	Данные	float16	R	
16	0x2210	Данные	float16	R	
17	0x2211	Данные	float16	R	
18	0x2212	Данные	float16	R	
19	0x2213	Данные	float16	R	
20	0x2214	Данные	float16	R	
21	0x2215	Данные	float16	R	
22	0x2216	Данные	float16	R	
23	0x2217	Разграничение доступа к архивной информации	float16	R	

Таблица К.7 – Состав газа расходомера доступен для чтения и записи (W), перед записью необходимо ввести пароль поставщика (P).

№	Адрес	Наименование	Тип данных	Доступ	Примечание
1	0x3000	Номер метода расчета коэф-та сж-ти	uint32	R/W/P	См. таб. К.7.1
2	0x3002	Плотность	uint32	R/W/P	
3	0x3004	Азот	uint32	R/W/P	
4	0x3006	Диоксид углерода	uint32	R/W/P	
5	0x3008	Метан	uint32	R/W/P	
6	0x300A	Этан	uint32	R/W/P	
7	0x300C	Пропан	uint32	R/W/P	
8	0x300E	н-Бутан	uint32	R/W/P	
9	0x3010	Изобутан	uint32	R/W/P	
10	0x3012	н-Пентан	uint32	R/W/P	
11	0x3014	Изопентан	uint32	R/W/P	
12	0x3016	н-Гексан	uint32	R/W/P	
13	0x3018	н-Гептан	uint32	R/W/P	
14	0x301A	н-Октан	uint32	R/W/P	
15	0x301C	н-Нонан	uint32	R/W/P	
16	0x301E	н-Декан	uint32	R/W/P	
17	0x3020	Водород	uint32	R/W/P	
18	0x3022	Кислород	uint32	R/W/P	
19	0x3024	Монооксид углерода	uint32	R/W/P	
20	0x3026	Вода	uint32	R/W/P	
21	0x3028	Сероводород	uint32	R/W/P	
22	0x302A	Гелий	uint32	R/W/P	
23	0x302C	Аргон	uint32	R/W/P	
24	0x302E	Компонент 22	uint32	R/W/P	
25	0x3030	Компонент 23	uint32	R/W/P	
26	0x3032	Компонент 24	uint32	R/W/P	
27	0x3034	Компонент 25	uint32	R/W/P	
28	0x3036	Компонент 26	uint32	R/W/P	
29	0x3038	Компонент 27	uint32	R/W/P	
30	0x303A	Компонент 28	uint32	R/W/P	
31	0x303C	Компонент 29	uint32	R/W/P	
32	0x303E	Компонент 30	uint32	R/W/P	
33	0x3040	Компонент 31	uint32	R/W/P	
34	0x3042	Компонент 32	uint32	R/W/P	
35	0x3044	Компонент 33	uint32	R/W/P	

Руководство по эксплуатации

Nº	Адрес	Наименование	Тип	Доступ	Примечание
			данных		
36	0x3046	Компонент 34	uint32	R/W/P	
37	0x3048	Компонент 35	uint32	R/W/P	
38	0x304A	Компонент 36	uint32	R/W/P	
39	0x304C	Компонент 37	uint32	R/W/P	
40	0x304E	Компонент 38	uint32	R/W/P	
41	0x3050	Компонент 39	uint32	R/W/P	
42	0x3052	Компонент 40	uint32	R/W/P	
43	0x3054	Компонент 41	uint32	R/W/P	
44	0x3056	Компонент 42	uint32	R/W/P	
45	0x3058	Компонент 43	uint32	R/W/P	
46	0x305A	Компонент 44	uint32	R/W/P	
47	0x305C	Компонент 45	uint32	R/W/P	
48	0x305E	Компонент 46	uint32	R/W/P	
49	0x3060	Компонент 47	uint32	R/W/P	
50	0x3062	Компонент 48	uint32	R/W/P	
51	0x3064	Компонент 49	uint32	R/W/P	
52	0x3066	Компонент 50	uint32	R/W/P	
53	0x3068	Компонент 51	uint32	R/W/P	
54	0x306A	Компонент 52	uint32	R/W/P	
55	0x306C	Компонент 53	uint32	R/W/P	
56	0x306E	Компонент 54	uint32	R/W/P	
57	0x3070	Компонент 55	uint32	R/W/P	
58	0x3072	Компонент 56	uint32	R/W/P	
59	0x3074	Компонент 57	uint32	R/W/P	
60	0x3076	Компонент 58	uint32	R/W/P	
61	0x3078	Компонент 59	uint32	R/W/P	
62	0x307A	Компонент 60	uint32	R/W/P	
63	0x307C	Компонент 61	uint32	R/W/P	
64	0x307E	Компонент 62	uint32	R/W/P	
65	0x3080	Компонент 63	uint32	R/W/P	
66	0x3082	Сумма компонентов	uint32	R	

№	Номер метода	Описание
1	0	Заданное значение
2	1	GERG-91mod
3	2	ВНИЦ СМВ

Приложение Л

Таблица	Л. 1	
N⁰	Битовая маска кода НС	Описание
1	0x00000001	T > Tmax
2	0x00000002	T < Tmin
3	0x00000004	P > Pmax
4	0x0000008	P < Pmin
5	0x00000010	Признак наличия информации в статусе
6	0x0000020	Превышение ошибок УЗ
7	0x00000040	Загрязнение УЗ
8	0x00004000	Сбой АЦП
9	0x00008000	Сбой памяти
10	0x00010000	Общий бит НС от ПП
11	0x00020000	Нет питания
12	0x00040000	Нет связи
13	0x00080000	$Q > Qmax$ или $Qotc \le Q \le Qmin$
14	0x00100000	T > Tmax или T < Tmin
15	0x00200000	P > 1.1* Pmax или P < Pmin
16	0x00400000	Vs > Vs max или Vs < Vs min
17	0x00800000	Vp > Vp max или Vp < Vp min
18	0x01000000	Ошибка м/с FRAM
19	0x02000000	Ошибка м/с FLASH
18	0x8000000	Общий бит НС

Битовые маски кодов HC в архиве BP-20

Битовые маски кодов НС в архиве РШ

Таблица	иЛ. 2	
N⁰	Битовая маска кода НС	Описание
1	0x0001	Нет питания (только в архиве)
2	0x0002	Нет связи с ПП
3	0x0004	Сбой, засорение или неисправность УЗ датчика
4	0x0008	НС по расходу
5	0x0010	НС датчика температуры
6	0x0020	НС датчика давления
7	0x0040	Данные не верны (несоответствие версии ПП и РШ!)
8	0x0080	НС АЦП ПП (нет давления и температуры)
9	0x0100	Наличие НС от ПП
10	0x0200	$Q > Qmax^*1,1$
11	0x0400	T > Tmax или T < Tmin
12	0x0800	P > 1.1* Pmax или P < Pmin
13	0x1000	Общий бит НС

Приложение М

Примеры распечаток с РШ на принтер

Таблица М.1 - Текущие параметры

	Абонент	
	НЕБ Велсия 1.12.1.0 №50001 16:02 14.12.2015	с. 1
	Mertar and property and a solution to consider a solution of the association of	a sa n
Variation 1	TH HUBBERTER SHAREHON	
Presides Prima	× 76 X	
Packog crab	(дертным (ыс)	0.00 MS/9
Facxog pace	8.88 M3/4	
UCBOM CTRM,	325412 MG	
Объем рабоч	зий прямой (Vp)	176618 M3
Объем стани	артный реверсивный (Vc-рев)	38 m3
Octem pacov	ий реверсивный (Урърев)	40 m3
Раеность пр	оямого и обратного стандартного объема (dVc)	325374 M3
Разность пр	иямого и обратного рабочего объема (dVp)	176578 m3
Температура	ν (T)	23,94 °C
Давление аб	солютное (Ра)	0.000188 MDa
Лавление из	Estovence (Pu)	-0.101137 MDa
Krasadadatatatasaa		1 007490
i vozandych naterica ni j	the first from the base of the	4. in CFCFF CDCFC
DC mar marine		0000 0000
LIC MEDIEPSED	n u hueucuaasubahenn	0000-0000
мс вычислия	еля	0000-00000
	Расшифровка НС ВР	
0×0001	Нет питания (только в архиве)	
0×0002	Иет связи с ПО	
0×0004	Сбой, васорение или неисправность УЗ датчиков	2
0×0008	Данные расхода не верны	
0×0010	Данные датчика температуры не верны	
020020	Данные датчика давления не верны	
0×0040	Данные не верны общий бит	
0×0080	НС АНО ПО (мат пазлания и температиры)	
0×0100	Hornaus HC or IC	
020200	0 > 0 may $1 = 1$	•
0×0///20	T > Tass con T < Tass	
8 x 8 % 8 8 9	$1 > 10000 \times 10000 + 1 > 100000$	
0X0800	$\mathbf{P} > 1_{0}\mathbf{I} + \mathbf{K}$ Find \mathbf{X} (4014) $\mathbf{P} < \mathbf{F}$ (1011)	
NX T ORIG	UBQMA BMT HL	
	Расшифровка НС 101	
0x000000001	T > Tmax	
0x000000002	T < Tmin	
0x00000004	P > Pmax	
0×000000008) P < Pmin	
0x00000010	Признак наличия информации в статусе	
0×00000020	Превышение ошибок УЗ	
avaaaaaaaa	Samasuanua VS	
avaaaaaaaa		
G_GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	с часкої такії І Ской паката	
0~00010000	n oranazi dare un en	
0.2000100000	r sasanan na ang ang ang ang ang ang ang ang	
9X00020000	PHONE FRATERMAN	
0X00040008	NET CBASH	
0x0088000	U > Qmax или Qotc ≤≕ Q ≤≕ Qmin	
0×00100000	и — T > Tmax или T < Tmin	
0x00200000) $P > 1.1 * Pmax или P < Pmin$	
0x00400000	. Vs > Vs max whw Vs $<$ Vs min	
0x00800000	Vo > Vo max where $Vo < Vo$ min	

Таблица М.2 – Почасовые данные

Канал 1 Часовые записи с 10:00 13.12.2015г. по 10:00 14.12.2015г.							
ч.	Vс, м3	Vс.рев, м3	dVc, M3	Vвост, м3	т,•с	Р, МПа	HC
10	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
11	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
12	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
13	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
14	6671.7	Ø.Ø	6671.7	6671.7	10.00	0.2013	1001
15	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
16	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
17	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
18	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
19	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
20	6671.7	Ø Ø	6671.7	6671.7	10.00	0.2013	1001
21	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
22	6671.7	Ø.Ø	6671.7	6671.7	10.00	0.2013	1001
23	6671.7	Ø.Ø	6671.7	6671.7	10.00	0.2013	1001
Ø	6671.7	Ø.Ø	6671.7	6671.7	10.00	0.2013	1001
1	6671.7	0.01	6671.7	6671.7	10.00	0.2013	1001
2	6671.7	Ø.Ø.	6671.7	6671.7	10.00	0.2013	1001
3	6671.7	Ø.Ø(6671.7	6671.7	10.00	0.2013	1001
4	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
5	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
6	6671.7	0.0	6671.7	6671.7	10.00	0.2013	1001
7	6671.7	Ø.Ø	6671.7	6671.7	10.00	0.2013	1001
8	6671.7	0.0	6671.7	4025.4	10.00	0.2013	1003
9	3480.1	0.3	3479.7	0.0	14.53	0.1705	1002
ум:	156928.3	0.3	156927.9	150801.9	аналагана желекене алық салаф	en anne an anna an anna an an an	1003
Средн:					10.19	0.2000	

Таблица М.3 – Посуточные данные

Абонент ОЕС Версия 1.12.1.0 №50001 16:04 14.12.2015г. С. 1								
Kausa -	E							
Суточные акписи с 10:00 01.11.2015г. по 10:00 01.12.2015г.								
C.	Vс, м3	Ус.рев. м3	dVс, м3	Vвост, м3	T,°C	Р, МПа	HC	
1	0.0	0.0	0.0	0.0	0.00	0.0000	0000	
2	0.0	0.0	0.0	0.0	0.00	0.0000	0000	
3	Ø.Ø	0.0	0.0	0.0	0.00	0.0000	0000	
4	0.0	0.0	Ø.Ø	· Ø.Ø	0.00	0.0000	0000	
5	0.0	0.0	0.0	0.0	0.00	0.0000	0000	
6	0.0	0.0	0.0	Ø.Ø	0.00	0.0000	0000	
7	Ø.Ø	0.0	0.01	0.0	0.00	0.000	0000	
8	0.0	0.0	0.0	0.0	0.00	0.0000	0000	
9	Ø.Ø	Ø.0	0.0	Ø.Ø	0.00	0.0000	0000	
10	0.0	Ø.Ø	Ø.Ø	0.0	0.00	0.0000	0000	
11	0.0	Ø.Ø	0.0	0.0	0.00	0.0000	øøøø	
12	0.0	0.0	0.0	Ø.Ø	0.00	0.0000	0000	
13	0.0	Ø.Ø	0.0	Ø.Ø	0.00	Ø.ØØØØ	0000	
14	0.0	0.0	0.0	0.0	0.00	0.0000	ØØØØ	
15	Ø.Ø	Ø.Ø	0.0	Ø.0	0.00	0.0000	0000	
16	0.0	0.0	0.0	0.0	0.00	0.0000	0000	
17	0.0	Ø.Ø	Ø.Ø	Ø . Ø j	0.00	0.0000	0000	
18	0.0	6. 0	0.0	0.0	0.00	0.0000	0000	
19	0.0	0.0	0.0	Ø.Ø	0.00	0.0000	0000	
20	0.0	0.0	0.0	0.0	0.00	0.0000	0000	
21	0.0	0.0	0.0	0.0	0.00	0.0000	0000	
	0.0	0.0	0.0	0.0	0.00	0.0000	0000	
23	10.10	0.0	0.0	0.0	0.00	0.0000	0000	
24	0.0	0.0	0.0	0.0	0.00	0.0000	0600	
20	0.0	N.N.	0.0	0.0	0.00	0.0000	NANA	
20	0.0	12.12	0.0	M . M	0.00	0.0000	00000	
2/	0.0	N N	0.0	() . () () . ()	0.00	0.0000	CACACACA	
20	0.0	以,以 (五) (五)	0.0	0.0	0.00	0.0000	0000	
30	0.0	0.0	0.0	0.0	0.00	0.0000	0000	
Сумт	0.0	0.0		0.0			0000	
Среди: Время:			8		0.00	0.0000	Ø мин.	

Таблица М.4 – Архив событий

Канал	1.	Архив	cos	ытий	с 1а по 1а	5:06 14.11.2 5:06 14.12.2	2015r. 2015r.
10.32	14 12 2015m	CHARLE MEDER (M)	11	Omio		6.5000	
10.32	14 12 20150	CMANA MADAW (M)	141	Omin		A. 5000	
10:02	14.12.2015	Вкл., пилсения	6 3 m	OTET		14,12,2015	10:01
09:53	14.12.2015	CMENA DADAM, (M)	К1	Расыный	~	1 2	de 300 10 307 20
09:53	14.12.2015	Смена парам. (М)	K1	Parsenia	-1.20	ç.	
02:53	14.12.2015c.	Смена парам. (М)	K1	Parsenia	MAC	Q	
09:28	14.12.2015r.	CMMMA Hapan (A)	KL	P6ao		0.1013	
09:26	14.12.2015c.	CMONE DEDEM. (A)	K1	PEan		0.1050	
08:35	14.12.2015r.	Вкл. питания		oren.		12,12,2015	19:00
09:11	12.12.2015г.	Смена парам.(М)	K1	н-Нонан		6.0000	
09:10	12.12.2015	Смена парам. (М)	K1.	INORCHA	vrnepoz	5.0000	
09:10	12.12.20156.	CMENA DADAM. (M)	K1	éproe	3	4.0000	
09:10	12.12.2015	Смена парам.(М)	K1	Гений	2	3,0000	
09:09	12.12.2015r.	Смена парам. (М)	K1	്രനമ്		2.0000	
09:09	12.12.2015c.	CMMMA TROAM. (M)	K1	Сероволс	10 0 21	1.0000	
09:09	12.12.2015	CHERRER CHERRER (M)	K1	്വെഷ്	a far an far	0.0000	
09:08	12.12.2015	CMMMA MADAM. (M)	K1	Teruada		0.8500	
09:04	12.12.2015r.	Смена парам. (М)	K1	Лиоксил	vrnenoz	15.3000	
09:04	12.12.2015r.	CHEMA DADAM. (M)	Ki	Лиоксия	vrnepoz	14.3000	
09:03	12.12.2015	CMPRA DADAM. (M)	K1	Kcix	3	1.1100	
09:01	12.12.2015	CHEMA DADAM. (M)	K1	Omax		67000.0000	
89:88	12.12.2015	Смена парам. (М)	K1	Qmin		5.5000	
09:00	12.12.2015	Смена парам. (М)	K1	Qore		55.0000	
08:59	12.12.20156.	Смена парам. (М)	K1	и-нонан		0.7500	
98:59	12.12.2015	Смена парам.(М)	K1.	н-Декан		0.1200	
08:58	12.12.2015r.	Смена парам.(М)	K1.	Водород		1.0000	
08:58	12.12.2015c.	Смена парам.(М)	K1.	Водород		1.0000	
08:58	12.12.2015-	Смена парам.(М)	K1	Моноокси	un vrmer	0.9800 .	
08:58	12.12.2015c.	Смена парам.(М)	К1.	Boga	M (1	0.7200	
08:57	12.12.2015r.	Смена парам.(М)	K1	Гелий		0.5100	
08:57	12.12.20156.	Смена парам.(М)	K1	Артон		1.0000	
08:56	12.12.2015r.	Смена парам.(М)	К1.	Гелий		6.3500	
08:56	12.12.2015c.	Смена парам.(М)	KJ.	Ceposoac	BOB	5.0000	
08:55	12.12.2015c.	Смена парам.(М)	K1.	Виоксид	vrnepo,	16.4000	
08:55	12.12.20156.	Смена парам.(М)	K1.	Диоксид	углеро,	15.3000	
08:54	12.12.2015c.	Смена парамы (М)	K1	Ксњ	л ^е	1.1100	
08:37	12,12,2015m.	Вкл. питания		C) T (C) 1 a		12.12.2015	08:36
06:16	12.12.2015c.	Смена парам.(М)		Время		12.12.2015	08:16
08:15	12.12.2015г.	Смена парам.(М)		Вреня		12.12.2015	06:15
09:13	12.12.20156.	Смена парам. (М)		Время		12.12.2015	08:13
08:13	12.12.2015	Смена парам. (М)		Bperss		12.12.2015	09:13
08:04	12.12.2015c.	Смена парам.(М)	K3	Qmin		100.0000	191993 - Hardeller
08:04	12.12.2015c.	Смена парам.(М)	K.).	Расч-ые	сутки	1.	
08:04	12.12.2015c.	Смена парам.(М)	K1	Расчтые	сутки	5	
08:03	12.12.2015c.	Смена парам.(М)	К1.	Расчный	Max	10	
08:03	12.12.2015	Смена парам.(М)	К3.	Расч-ый	wac.	9	
00:49	12.12.2015r.	Инициаливация	11000000	Все афх⊬	1861	12.12.2015	00:49

Таблица М.5 – База настроек

ERGELTE WEIT	
UFG Версия 1.12.1.0 №50001 16:07 14.12	.2015r. C. 1
База мастроек	
Kanan 1	
Метрологически незначимая часть ПО	- 1.12 or 14.12.2015r.
Метрологически эначимая часть ПО	- 1.0 or 15.10.2013r.
Датчик даеления	- «6солютный
Минимально допустимое давление (Pmin)	- 0.000 MAx
Максимально допустимое давление (Fmax)	- 45.000 MNa
Договорное значение давления (Pdog)	- 0.201 MNa
Барометрическое давление в регионе (Рбар)	- 0.101325 MNA
Минимально допустимая температура (Tain) .	50.00 °C
Максимально лопустимая температура (Тфах)	~ 70.00 °C
Логоворное значение температуры (Tdog)	- 10.00 °C
eduction reaction to access to a transmission from a subficience of the second by	
Минимально допустимый расход (Отір р.у)	- 6.500 м3/ч
Максимально допустимый расход (Олах р.у)	- 67000.000 м3/ч
Минимальное значение расхода (Оотс р.v)	- 55.000 м3/ч
Договорное значение расхода при НС (Qdog p.v)	- 3600,000 43/4
Метоя расчета коэффициента сжимаемости	- BH84U CMB
	0 20 .0027-2020 10.2020/00/00
Метан	- 11.0000 %
Этан	- 77.0000 %
Пропан	- 2.0000 %
и-Бутан	- 0.0000 %
Изобутан	- 0.0100 %
Asor	- 1.0400 %
Диоксид углерода	- 6.0000 %
Сероводород	- 7.0000 % ·
Начало суток	- 10 час.
Расчетные сутки	1.
Период получения данных (dTimeArhieve)	— 10 cex.
Логический номер РШ	- 1
Логический номер ПП	
Количество каналов	<u>i</u>
n conservatives un internatives of CPENDER - Enderhalden CPENDER	
при НС	- по Одог

Таблица М.6 – Архив НС

	A!	бонент		
UFG Bei	осия 1.	12.1.0 250001 16:08	14.12.2015c. C. 1	
	Áp:	кив нештатных ситуац	ktětí C.,	1.
Дата: 13.12.2015г. Ус восстановленный 6671.7 м3 Расшифровка НС Отсутствие питания Общая НС	104.	Vp восстановленный 3600.0 мЗ	Код НС 1001 Длительность, 3600 3600	сөк
Дата: 13.12.2015г. Ус восстановленный 6671.7 м3 Расшифровка НС Отсутствие питания Общая НС	114.	Vp восстановленный 3600.0 мЗ	1001 Длительность, 3600 3600	COR
Дата: 13.12.2015г. Ус восстановленный 6671.7 м3 Расшифровка НС Отсутствие питания Общая НС	124.	Vp восстановленный 3600.0 м3	Код НС 1001 Длительность, 3600 3600	сек
Дата: 13.12.2015г. Ус восстановленный 6671.7 мЗ Расшифровка НС Отсутствие питания Общая НС	134.	Vp восстановленный 3600.0 м3	Код НС 1001 Длительность, 3600 3600	сөк
Дата: 13.12.2015г. Ус восстановленный 6671.7 м3 Расшифровка НС Отсутствие питания Общая НС	144.	Vp восстановленный 3600.0 м3	Код НС 1001 Длительность, 3600 3600	C⊕K
Дета: 13.12.2015г. Ус восстановленный 6671.7 м3 Расшифровка НС Отсутствие питания Общая НС	159.	Ур восстановленный 3600.0 м3	Код НС 1001 Длительность, 3600 - 3600	C⊕K

Приложение Н

Перечень документов, на которые даны ссылки

Таблица Н.1

Обозначение	Наименование	Номера пунктов настоящего РЭ, в которых дана ссылка
ГОСТ Р МЭК 60079-0-2011	Взрывоопасные среды. Часть 0. Оборудование. Общие требования	1.7.1, 1.7.2, 1.7.3
ГОСТ Р ІЕС 60079-1-2011	Взрывоопасные среды. Часть 1. Оборудование с видом взрывозащиты «взрывонепроницаемые оболочки "d"»	1.7.1, 1.7.2, 1.7.3
ГОСТ Р МЭК 60079-11-2010	Взрывоопасные среды. Часть 11 Искробезопасная электрическая цепь "i"	1.7.1, 1.7.2, 1.7.3
ГОСТ Р 50571.10-96	Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 54. Заземляющее устройство и защитные проводники	2.3.11.2, 2.3.12.1
ГОСТ 2991-85	Ящики дощатые неразборные для грузов массой до 500 кг. Общие технические условия	1.7.1
ГОСТ 10198-91	Ящики деревянные для грузов массой св. 200 до 20000 кг. Общие технические условия	1.7.1
ГОСТ 10434-82	Соединения контактные электрические. Классификация. Общие технические условия	2.3.11.2, 2.3.12.1
ГОСТ Р 52931-2008.	Приборы контроля и регулирования технологических процессов. Общие технические условия	6.1, 6.4, 6.6
ГОСТ 15150-69	Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды	1.1.2, 6.3, 6.5, 6.6
ГОСТ 24634-81	Ящики деревянные для продукции, поставляемой для экспорта. Общие технические условия	1.9.1
ГОСТ 26828-86	Изделия машиностроения и приборостроения. Маркировка	1.8.1
ПР.50.2.107-09	Государственная система обеспечения единства измерений. Требования к знакам утверждения типа стандартных образцов или типа средств измерений и порядок их нанесения	1.6.2, 1.6.3
ГОСТ 30319.1-96	Газ природный. Методы расчета физических свойств. Определение физических свойств природного газа, его компонентов и продуктов его переработки	2.6.4
ГОСТ 30319.2-96	Газ природный. Методы расчета физических свойств. Определение коэффициента сжимаемости	2.6.4